Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences


IMPACT FACTOR 2018: 0.961

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.263
Source Normalized Impact per Paper (SNIP) 2018: 0.505

Online
ISSN
1865-7117
See all formats and pricing
More options …
Volume 70, Issue 4

Issues

Synthesis of bis-thiazolidin-4-ones from N,N,N″-(1,ω-alkanediyl)bis(N″-organylthiourea) derivatives

Alaa A. Hassan / Kamal M.A. El-Shaieb / Amal S. Abd El-Aal / Stefan Bräse
  • Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Nieger
  • Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, PO Box 55 (A. I. Virtasen aukio 1), 00014 Helsinki, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-20 | DOI: https://doi.org/10.1515/znb-2014-0226

Abstract

A new series of (2Z,2′E)-dimethyl 2,2′-[(2Z,2′Z)-3,3′-(alkanediyl)bis(4-oxo-2-iminothiozolidin-3-yl-5-ylidene)]acetates has been synthesized by the reaction of N,N″-(1,ω-alkanediyl)bis(N′-organylthiourea) derivatives with dimethyl acetylenedicarboxylate. The structures were established by spectroscopic data, elemental analyses, and single crystal X-ray crystallography. A rationale for the formation of the products is presented.

Keywords: bis-thiazolidin-4-ones; dimethyl acetylenedicarboxlate; N,N″-(1,ω-alkanediyl)bis(N′-organylthiourea) derivatives

1 Introduction

Thiazolidinones are known to be privileged small ring heterocycles because they exhibit different types of biological activities [1–6]. The 4-thiazolidinone ring system comprises a large number of biologically active compounds that have been evaluated for their anticonvulsant [7, 8], antidiarrheal [9], antiplatelet activating [10], antimicrobial [3, 10, 11], anti-HIV [12–15], and anticancer [16–18] activities. Several methods for the stereoselective synthesis of thiazolidin-4-ones are available in the literature [19–29].

Conversely, N,N″-(1,ω-alkanediyl)bis(N′-organylthiourea) derivatives 1 constitute a core structure in various synthetic heterocyclic compounds [30]. In recent years, microwave assisted or conventional thermal intramolecular heterocyclization reactions of compound 1 have been reported [31]. Imidazolidine, diazepine, and thiadiazepane derivatives were isolated upon treating ethenetetracarbonitrile with bithiourea derivatives 1 [32].

Recently, it has been reported that the one pot, pseudo-five-component reaction of an aliphatic diamine, isothiocyanatobenzene and dialkyl but-2-ynedioate at room temperature in anhydrous CH2Cl2 gave bis[2(arylimino)-1,3-thiazolidin-4-ones] [33].

The present investigation deals with the synthesis of some new (2Z,2′E)-dimethyl 2,2′-[(2Z,2′Z)-3,3′-(alkanediyl-bis(4-oxo-2-substituted imino)thiazolidin-3-yl-5-ylidene)]- diacetates 3ah in moderate yields from N,N″-(1-ω-alkanediyl)-bis(N′-organylthiourea) derivatives 1ah.

2 Results and discussion

To obtain new bis(thiazolidin-4-ones) 3ah, a mixture of a doubled molar amount of dimethyl acetylenedicarboxylate (DMAD, 2) with 1 mole of the respective bithiourea derivatives 1ah was heated for 4–12 h at reflux in absolute ethanol. A yellow solid of 3ah was obtained, which, after spectroscopic characterization, was confirmed to be the proposed compound (Scheme 1).

Synthesis of bis(4-oxo-2-iminothiazolidine-5-ylidene)acetates.
Scheme 1:

Synthesis of bis(4-oxo-2-iminothiazolidine-5-ylidene)acetates.

The synthesized compounds were characterized by their IR, 1H NMR, 13C NMR, and mass spectral data, as well as single crystal X-ray crystallography.

The IR spectrum of 3g as an example was characterized by the presence of a new C=O band at 1730 cm–1, which agrees with those found for other thiazolidin-4-ones [34–36]. The ester carbonyl (C=O) and conjugated double bond (C=C) absorption bands were observed at 1695 and 1620 cm–1, respectively. The N–H bands of bithiourea derivatives 1ah were not evident in the IR spectra of 3ah, whereas an absorption band at 1640 cm–1, attributed to the C=N stretching vibration, was observed for 3g as an example.

The 1H NMR chemical shifts of compounds 3ah supported the proposed structure. In 3g, signals assigned to N-(CH2)3-N, were detected at δ = 2.35 and 4.00 ppm, whereas singlet signals were observed at 3.75 and 6.88 ppm due to OCH3 and vinyl-CH, respectively, in addition to phenyl protons. The absence of resonances assigned to NH, N″H, HN′-phenyl protons of 1ah supported the exact structure.

In the 13C NMR spectra of 3ah, the prominent signals corresponding to the carbons of the thiazolidin-4-one ring in all compounds were observed. The 13C NMR spectrum of 3g showed five signals at δ = 166.28, 164.89, 150.82, 141.52, and 116.16 ppm, due to C=O (ester), C=O (ring), thiazolidinone C-2, thiazolidinone C-5, and vinyl-CH respectively.

According to elemental analyses and mass spectrometry, a net release of methanol (M.W. 32) had occurred. There are possibilities for formation of various isomers that would behave very similarly spectroscopically (Fig. 1). Similarly, all products observed are formed from one of the four labile 1:1 adducts A–D (Fig. 1).

Structures of putative intermediates A–D.
Fig. 1:

Structures of putative intermediates AD.

The molecular structure of 3g was established by a single crystal X-ray analysis (Fig. 2). The thiazolidinone ring and the adjacent benzene rings adopt a twisted geometry and the angle between the least-squares planes of the thiazolidine ring and the benzene ring are 97° (C1, C2, S3 C4, N5 and C42, C43, C44, C45, C46, C47) and 55° (N9, C10, C11, S12, C13 and C132, C133, C134, C135, C136, C137), while the thiazolidine ring and the acetate are coplanar. The X-ray structure analysis confirms a cisoid geometry between the vinylic CH bond and the thiazolidine carbonyl group.

Molecular structure of 3g in the crystal with displacement parameters drawn at the 50 % probability level. The crystallographic numbering does not reflect the systematic IUPAC numbering.
Fig. 2:

Molecular structure of 3g in the crystal with displacement parameters drawn at the 50 % probability level. The crystallographic numbering does not reflect the systematic IUPAC numbering.

The formation of the products 3ah may be rationalized as an initial attack by SH group of 1ah at the C≡C triple bond of 2 to give the adduct C. Elimination of two molecules of MeOH affords bis(thiazolidinones) 3ah (Scheme 2).

Rational for formation of 3a–h.
Scheme 2:

Rational for formation of 3ah.

In conclusion, an efficient cyclization protocol for N,N″-(1,ω-alkanediyl)bis(N′-organylthiourea) derivatives with dimethyl acetylenedicarboxylate to a new series of bis(thiazolidin-4-ones) has been developed. In a different manner to the reported heterocyclization of the bithioureas [30, 31], the present reaction course has been found to be independent on the length of the alkanediyl chain.

3 Experimental section

All melting points were determined using open capillaries on a Gallenkamp melting point apparatus (Weiss-Gallenkamp, Loughborough, UK). The IR spectra were recorded with a Shimadzu 408 (Shimadzu Corporation, Kyoto, Japan) instrument using potassium bromide. The 400 MHz 1H NMR and 100 MHz 13C NMR were recorded on a Bruker AM 400 spectrometer (Bruker BioSpin, Karlsruhe, Germany) with tetramethylsilane as the internal standard; s = singlet, t = triplet, q = quartet, m = multiplet. The 13C NMR signals were assigned on the basis of DEPT 135/90 spectra. The mass spectra (70 eV, electron impact mode) were recorded on a Finnigan MAT (Germany) instrument. Elemental analyses were carried out at the Microanalytical Center, Cairo University, Egypt. Reactions were monitored by thin-layer chromatography (TLC) on pre-coated silica gel HF 254 plates from Merck, and compounds visualized by exposure to UV light. Preparative layer chromatography (plc) used air-dried 1.0 mm thick layers of slurry of silica gel (Merck PF254) on 48 cm wide and 20 cm high glass plates using the solvents listed. Zones were detected by quenching of indicator fluorescence upon exposure to 254 nm light and eluted with acetone.

3.1 Starting materials

N,N″-(1,ω-alkanediyl)bis(N′-organylthiourea) derivatives 1ah were prepared by the reaction of the diamine (1,2-diaminoethane, 1,3-diaminopropane) with ethyl-, phenyl-, benzyl-, or allylisothiocyanate in DMF according to published procedures in literature: 1a [37], 1b [38], 1c [39], 1d [30], 1e [40], 1f [31], 1g [41], and 1h [42]. DMAD (2) was bought from Fluka.

3.2 Reaction of N,N″-(1,ω-alkanediyl)bis(N′-organylthiourea) derivatives 1a–h with DMAD(2)

Into a 100 mL round bottom flask containing (284 mg, 2 mmol) of 2 in 15 mL of absolute ethanol, a solution of 1 mmol of 1ah in absolute ethanol (20 mL) was added dropwise with stirring. The mixture was gently refluxed with stirring for 4–12 h (4 h for 1b and 1d; 9 h for 1c; 10 h for 1a and 1e; 12 h for 1f). The reactions were monitored by TLC analyses. The solvent was concentrated and the residue was subjected to preparative layer chromatography (plc) using toluene-ethyl acetate (5:1) as the developing solvent to give one main zone and numerous other ones.

3.3 (2Z,2′E)-dimethyl-2,2′-[(2Z,2′Z)-3,3′-(ethane-1,2-diyl)bis-(2-ethylimino)-4-oxothiazolidin-3-yl-5-ylidene)]diacetate (3a)

Yellow crystals (300 mg, 66 %), m. p. 176–177 °C (acetonitrile). – IR (KBr): υ = 2990 (aliph. CH), 1720, 1700 (C=O), 1640 (C=N), 1615 (C=C) cm–1. – 1H NMR (400 MHz, CDCl3, 20 °C, TMS): δ = 6.8 (s, 2H, 2 vinyl CH), 3.86 (s, 6H, 2 OCH3), 3.55 (s, 4H, 2 CH2N), 3.35 (q, 4H, J = 7.64 Hz, 2 CH2), 1.15–1.30 (t, 6H, J = 7.64 Hz, 2 CH3). – 13C NMR (100 MHz, CDCl3): δ = 166.5 (ester C=O), 164.72 (cyclic C=O), 150.10 (thiazolidine C-2), 141.33 (thiazolidine C-5), 115.42 (vinyl CH), 52.93 (OCH3), 49.14 (CH2N), 40.18 (CH2), 15.79 (CH3). – MS (EI, 70 eV): m/z (%) = 452 (75) [M]+, 240 (100) [M–C8H9N2O3S]+, 226 (20) [C9H11N2O3S]+, 212 (12) [M–C10H13N2O3S]+, 87 (5) [M–C15H9N3O6S]+, 43 (5) [C2H5N]+. – C18H22N4O6S2 (452.52): calcd. C 47.56, H 4.88, N 12.33, S 14.11; found: C 47.69, H 4.97, N 12.19, S 13.95.

3.4 (2Z,2′E)-dimethyl-2,2′-[(2Z,2′Z)-3,3′-(ethane-1,2-diyl)bis-(2-allylimino)-4-oxothiazolidin-3-yl-5-ylidene)]diacetate (3b)

Yellow crystals (296 mg, 62 %), m. p. 154–155 °C (acetonitrile). – IR (KBr): υ = 2950 (aliph. CH), 1720, 1695 (C=O), 1645 (C=N), 1610 (C=C) cm–1. – 1H NMR (400 MHz, CDCl3, 20 °C, TMS): δ = 6.85 (s, 2H, 2 vinyl CH), 5.92–5.93 (m, 2H, allyl CH=), 5.25–5.27 (m, 4H, allyl CH2=), 4.50 (s, 4H, allyl CH2N), 3.85 (s, 6H, 2 OCH3), 3.52 (s, 4H, 2 CH2N). – 13C NMR (100 MHz, CDCl3): δ = 166.36 (ester C=O), 164.42 (cyclic C=O), 149.54 (thiazolidine C-2), 141.28 (thiazolidine C-5), 134.29 (allyl CH=), 118.31 (allyl CH2), 115.25 (vinyl CH), 54.60 (OCH3), 49.68 (CH2-N), 44.22 (allyl CH2N). – MS (EI, 70 eV): m/z (%) = 478 (44) [M]+, 447 (10) [M–CH3O]+, 267 (38) [M–C8H7N2O3S]+, 239 (27) [M–C10H11N2O3S]+, 152 (100) [M–C13H16N3O5S]+, 137 (41) [M–C14H17N2O4S2]+. – C20H22N4O6S2 (478.54): calcd. C 50.20, H 4.63, N 11.71, S 13.40; found: C 50.06, H 4.71, N 11.84, S 13.28.

3.5 (2Z,2′E)-dimethyl-2,2′-[(2Z,2′Z)-3,3′-(ethane-1,2-diyl)bis-(4-oxo-2- phenylimino)thiazolidin-3-yl-5-ylidene)]diacetate (3c)

Yellow crystals (368 mg, 67 %), m. p. = 166–167 °C (acetonitrile). – IR (KBr): υ = 3080 (arom. CH), 2970 (aliph. CH), 1725, 1695 (C=O), 1640 (C=N), 1620 (arom. C=C) cm–1. – 1H NMR (400 MHz, CDCl3, 20 °C, TMS): δ = 7.40–7.32 (m, 2H, arom. H), 7.30–7.21 (m, 6H, arom. H), 7.18–7.10 (m, 2H, arom. H), 6.80 (s, 2H, 2 vinyl CH), 3.80 (s, 6H, 2 OCH3), 3.58 (s, 4H, 2 CH2N). – 13C NMR (100 MHz, CDCl3): δ = 166.49 (ester C=O), 164.88 (cyclic C=O), 150.96 (thiazolidine C-2), 141.92 (thiazolidine C-5), 130.11, 129.37 (arom. C), 129.05, 129.29, 128.88, 127.88, 125.79, 125.99 (arom. CH), 115.76 (vinyl CH), 53.48 (OCH3), 41.45 (ethane CH2N). – MS (EI, 70 eV): m/z (%) = 550 (45) [M]+, 289 (100) [M–C14H13N2O3S]+, 135 (35) [M–C19H17N3O6S]+, 91 (10) [C6H5N]+. – C26H22N4O6S2 (550.61): calcd. C 56.72, H 4.03, N 10.18, S 11.65; found: C 56.84, H 3.91, N 10.05, S 11.80.

3.6 (2Z,2′E)-dimethyl-2,2′-[(2Z,2′Z)-3,3′-(ethane-1,2-diyl)bis-(2-benzylimino)-4-oxo-thiazolidin-3-yl-5-ylidene)]diacetate (3d)

Yellow crystals (360 mg, 62 %), m. p. 160–161 °C (acetonitrile). – IR (KBr): υ = 3110 (arom. CH), 2960 (aliph. CH), 1720, 1700 (C=O), 1645 (C=N), 1610 (arom. C=C) cm–1. – 1H NMR (400 MHz, CDCl3, 20 °C, TMS): δ = 7.34 (m, 10H, arom. H), 6.85 (s, 2H, 2 vinyl CH), 4.86 (s, 4H, 2 benzyl CH2), 3.86 (s, 6H, 2 OCH3), 3.65 (s, 4H, 2 CH2N). – 13C NMR (100 MHz, CDCl3): δ = 166.44 (ester C=O), 164.75 (cyclic C=O), 150.24 (thiazolidine C-2), 141.26 (thiazolidine C-5), 135.63 (arom. C), 135.61, 128.86, 128.59, 128.47, 128.38, 127.24 (arom. CH), 115.81 (vinyl CH), 56.16 (benzyl CH2), 52.93 (OCH3), 41.82 (ethane CH2N). – MS (EI, 70 eV): m/z (%) = 578 (91) [M]+, 461 (23) [M–C8H7N]+, 289 (42) [M–C14H13N2O3S]+, 91 (100) [PhCH2]+. – C28H26N4O6S2 (578.66): calcd. C 58.12, H 4.53, N 9.68, S 11.08; found: C 57.97, H 4.62, N 9.78, S 10.94.

3.7 (2Z,2′E)-dimethyl-2,2′-[(2Z,2′Z)-3,3′-(propane-1,3-diyl)bis-(2-ethylimino)-4-oxo-thiazolidin-3-yl-5-ylidene)]diacetate (3e)

Yellow crystals (294 mg, 63 %), m. p. 105–106 °C (acetonitrile). – IR (KBr): υ = 2970 (aliph. CH), 1725, 1700 (C=O), 1645 (C=N), 1605 (C=C) cm–1. – 1H NMR (400 MHz, CDCl3, 20 °C, TMS): δ = 6.88 (s, 2H, vinyl CH), 3.86 (s, 6H, 2 OCH3), 3.81 (t, 4H, J = 7.62 Hz, 2 CH2N), 2.5 (m, 2H, propane CH2), 3.55 (q, 4H, J = 7.66 Hz, CH2), 1.30 (t, 6H, J = 7.66 Hz, 2CH3). – 13C NMR (100 MHz, CDCl3): δ = 166.51 (ester C=O), 164.78 (cyclic C=O), 148.80 (thiazolidine C-2), 141.47 (thiazolidine C-5), 115.15 (vinyl CH), 52.48 (OCH3), 49.78 (CH2), 40.95 (propane CH2N), 28.52 (propane CH2), 15.89 (CH3). – MS (EI, 70 eV): m/z (%) = 468 (100) [M]+, 437 (10) [M–CH3O]+, 255 (75) [M–C8H9N2O3S]+, 227 (35) [M–C10H13N2O3S]+, 213 (12) [M–C11H15N2O3S]+, 59 (7) [COOMe]+. – C19H24N4O6S2 (468.55): calcd. C 48.70, H 5.16, N 11.96, S 13.69; found: C 48.59, H 5.24, N 12.08, S 13.82.

3.8 (2Z,2′E)-dimethyl-2,2′-[(2Z,2′Z)-3,3′-(propane-1,3-diyl)-bis(2-allylimino)-4-oxo-thiazolidin-3-yl-5-ylidene)]diacetate (3f)

Yellow crystals (323 mg, 66 %), m. p. 153–154 °C (acetonitrile). – IR (KBr): υ = 2980 (aliph. CH), 1735, 1715 (C=O), 1640 (C=N), 1610 (C=C) cm–1. – 1H NMR (400 MHz, CDCl3, 20 °C, TMS): δ = 6.84 (s, 2H, 2 vinyl CH), 5.92 (m, 2H, allyl CH=), 5.20 (m, 4H, allyl CH2=), 4.38 (m, 4H, allyl CH2N), 3.78 (s, 6H, 2 OCH3), 3.48 (t, 4H, J = 7.61 Hz, CH2N), 2.45 (m, 2H, propane CH2). – 13C NMR (100 MHz, CDCl3): δ = 166.45 (ester C=O), 164.72 (cyclic C=O), 149.55 (thiazolidine C-2), 141.27 (thiazolidine C-5), 134.38 (allyl CH=), 118.54 (allyl CH2=), 115.46 (vinyl CH), 54.60 (OCH3), 49.53 (allyl CH2N), 41.03 (propane CH2N), 28.50 (propane CH2). – MS (EI, 70 eV): m/z (%) = 492 (100) [M]+, 461 (10) [M–CH3O]+, 267 (35) [M–C9H9N2O3S]+, 225 (15) [M–C12H15N2O3S]+, 99 (54) [M–C17H19N3O6S]+, 59 (38) [COOMe]+. – C21H24N4O6S2 (492.57): calcd. C 51.21, H 4.91, N 11.37, S 13.03; found: C 51.36, H 5.04, N 11.21, S 12.94.

3.9 (2Z,2′E)-dimethyl-2,2′-[(2Z,2′Z)-3,3′-(propane-1,3-diyl)bis-(4-oxo-2- phenylimino)thiazolidin-3-yl-5-ylidene)]diacetate (3g)

Yellow crystals (346 mg, 61 %), m. p. 176–177 °C (acetonitrile). – IR (KBr): υ = 2960 (aliph. CH), 1730, 1695 (C=O), 1640 (C=N), 1620 (arom. C=C) cm–1. – 1H NMR (400 MHz, CDCl3, 20 °C, TMS): δ = 7.18–7.22 (m, 6H, arom. H), 7.12–7.14 (m, 4H, arom. H) 6.88 (s, 2H, vinyl CH), 4.00 (t, 4H, J = 7.65 Hz, 2 CH2N), 3.75 (s, 6H, 2 OCH3), 2.35 (m, 2H, propane CH2). – 13C NMR (100 MHz, CDCl3): δ = 166.28 (ester C=O), 164.89 (cyclic C=O), 150.82 (thiazolidine C-2), 141.52 (thiazolidine C-5), 129.64, 129.36, 129.07, 125.26, 121.06, 120.73 (arom. CH), 116.16 (vinyl CH), 52.52 (OCH3), 40.57 (CH2N), 25.75 (propane CH2). – MS (EI, 70 eV): m/z (%) = 564 (91) [M]+, 303 (100) [M–C12H9N2O3S]+, 289 (26) [M–C13H11N2O3S]+, 135 (76) [M–C20H19N3O6S]+, 91 (21) [C6H5N]+. –C27H24N4O6S2 (564.63): calcd. C 57.43, H 4.28, N 9.92, S 11.36; found: C 57.55, H 4.36, N 10.12, S 11.22.

3.10 (2Z,2′E)-dimethyl-2,2′-[(2Z,2′Z)-3,3′- (propane-1,3-diyl)-bis(2-benzylimino)-4-oxo-thiazolidin-3-yl-5-ylidene)]diacetate (3h)

Yellow crystals (377 mg, 64 %), m. p. 181–182 °C (acetonitrile). – IR (KBr): υ = 3080 (arom. CH), 2990 (aliph. CH), 1722, 1695 (C=O), 1645 (C=N), 1610 (arom. C=C) cm–1. – 1H NMR (400 MHz, CDCl3, 20 °C, TMS): δ = 7.41–7.44 (m, 2H, arom. H), 7.20–7.32 (m, 8H, arom. H), 6.90 (s, 2H, vinyl CH), 4.70 (s, 4H, benzyl CH2), 3.85 (s, 6H, 2 OCH3), 3.52 (t, 4H, J = 7.60 Hz, CH2N), 2.28 (m, 2H, propane CH2). – 13C NMR (100 MHz, CDCl3): δ = 166.44 (ester C=O), 164.75 (cyclic C=O), 149.70 (thiazolidine C-2), 141.21 (thiazolidine C-5), 138.84, 135.77 (arom. C), 129.01, 128.82, 128.30, 127.90, 127.46, 127.41 (arom. CH), 115.52 (vinyl CH), 56.06 (OCH3), 49.73 (benzyl CH2), 41.18 (propane CH2N), 28.66 (propane CH2). – MS (EI, 70 eV): m/z (%) = 592 (35) [M]+, 502 (10) [M–PhCH2]+, 289 (16) [M–C15H15N2O3S]+, 91 (100) [PhCH2]+. – C29H28N4O6S2 (592.69): calcd. C 58.77, H 4.76, N 9.45, S 10.82; found: C 58.64, H 4.83, N 9.56, S 10.94.

3.11 Single-crystal X-ray structure determination of 3g

Single crystals were obtained by recrystallization from acetonitrile. The single crystal X-ray diffraction study was carried out on a Bruker–Nonius Kappa CCD diffractometer at T = 123 K using MoKα radiation (λ = 0.71073 Å). Direct Methods (shelxs-98) [43] were used for structure solution and refinement was carried out using Shelxl-2013 [43] (full-matrix least-squares on F2). Hydrogen atoms were localized by different Fourier synthesis map and refined using a riding model. A semi-empirical absorption correction was applied. Crystal structure data: C27H24N4O6S2, Mr = 564.62, yellow rods, crystal size 0.50 × 0.08 × 0.04 mm3, monoclinic space group P21/n (no. 14), a = 8.992(1), b = 10.093(1), c = 30.033(3) Å, β = 96.28(1)°, V = 2709.3(5) Å3, Z = 4, dcalcd. = 1.384 mg m–3, F(000) = 1176 e, μ(MoKα) = 0.25 mm–1, 20 956 measured reflections, 2 θmax = 55°, 6139 independent, Rint = 0.046, 222 ref. parameters, R1 (for 4839 data with I > 2 σ(I)] = 0.056, wR2 (all data) = 0.121, S = 1.16, largest diff. peak/hole = 0.33/–0.30 e A–3.

CCDC 958575 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

  • [1]

    A. Saeed, N. Abbas, M. Flőrke, J. Braz. Chem. Soc. 2007, 18, 559.Google Scholar

  • [2]

    Y. Suzaki, K. Osakada, Asian J. Chem. 2006, 18, 331.Google Scholar

  • [3]

    S. N. Pandeya, D. Sriram, G. Nath, E. Declercq, Eur. J. Pharm. Sci. 1999, 9, 25.Google Scholar

  • [4]

    M. Abhinit, M. Ghodke, N. A. Pratima, Int. J. Pharm. Pharm. Sci. 2009, 1, 47.Google Scholar

  • [5]

    D. Prasad, A. Kumar, P. K. Shukl, M. Nath, Org. Med. Chem. Lett. 2011, 1, 1.Google Scholar

  • [6]

    E. Tatar, I. Küçükgüzel, E. DeClercq, R. Krishman, N. Kaushik-Basu, Marmara Pharm. J. 2012, 16, 181.Google Scholar

  • [7]

    K. M. Amin, A. D. E. Rahman, Y. A. Al-Eryani, Bioorg. Med. Chem. 2008, 16, 5377.CrossrefGoogle Scholar

  • [8]

    A. Agarwal, S. Lata, K. K. Saxena, N. K. Srivastava, A. Kumar, Eur. J. Med. Chem. 2006, 41, 1223.Google Scholar

  • [9]

    M. V. Diurno, O. Mazzoni, A. A. Izzo, A. Botagnese, Il Farmaco 1997, 52, 237.Google Scholar

  • [10]

    Y. Tanabe, H. Yamamoto, M. Murakami, K. Yanagi, Y. Kubota, H. Okumura, Y. Sanemitsu, G. Suzukama, J. Chem. Soc. Perkin Trans. 1, 1995, 7, 935.Google Scholar

  • [11]

    M. R. Shiradkar, K. K. Murahari, H. R. Gangadasu, T. Suresh, C. A. Kalyan, D. Panchal, R. Kaur, P. Burange, J. Ghogare, V. Mokale, M. Raut, Bioorg. Med. Chem. 2007, 15, 3997.CrossrefGoogle Scholar

  • [12]

    S. K. Srivastava, S. D. Srivastava, Eur. J. Med. Chem. 2010, 45, 3541.Google Scholar

  • [13]

    R. K. Rawal, Y. S. Prabhakar, S. B. Katti, E. DeClereq, Bioorg. Med. Chem. 2005, 13, 6771.CrossrefGoogle Scholar

  • [14]

    J. Balzarini, B. Orzeszko, J. K. Maurin, A. Orzesko, J. Med. Chem. 2007, 42, 993.Google Scholar

  • [15]

    M. L. Barreca, A. Chimirri, L. De Luca, A. Monforte, P. Monforte, A. Rao, M. Zappalà, J. Balzarini, E. DeClercq, C. Pannecouque, M. Witvrouw, Bioorg. Med. Chem. Lett. 2001, 11, 1793.Google Scholar

  • [16]

    Z. Hongyu, W. Shuhong, Z. Shumei, L. Aifeng, S. Ying, L. Rongshi, Z. Ying, E. Sean, W. S. Peter, F. Bingliang, Z. Bin, Y. Bing, J. Med. Chem. 2008, 51, 1247.Google Scholar

  • [17]

    V. Gududuru, E. Hurh, J. T. Dalton, D. D. Miller, Bioorg. Med. Chem. Lett. 2004, 14, 5289.CrossrefGoogle Scholar

  • [18]

    A. Insuasty, J. Ramirez, M. Raimondi, C. Echeverry, J. Quiroga, R. Abonia, M. Nogueras, J. Cobo, M. V. Rodiguez, S. A. Zacchino, B. Insuasty, Molecules 2013, 18, 5482.CrossrefGoogle Scholar

  • [19]

    D. R. Stlanrent, Q. Gao, D. D. Wu, M. H. Serrano-Wu, Tertrahedron Lett. 2004, 45, 1907.Google Scholar

  • [20]

    A. Gürsoy, N. Terzioglu, Turk. J. Chem. 2005, 29, 247.Google Scholar

  • [21]

    P. Vicini, A. Geonikaki, K. Anastasia, M. Incerti, F. Zani, Bioorg. Med. Chem. 2006, 14, 3859.CrossrefGoogle Scholar

  • [22]

    Z. Jieping, J. Blanchet, Tetrahedron Lett. 2004, 45, 4449.Google Scholar

  • [23]

    J. F. Dubreuil, J. P. Bazureau, Tetrahedron 2003, 59, 6121.Google Scholar

  • [24]

    M. A. P. Martins, C. P. Frizzo, D. M. Moreira, N. Zanatta, H. G. Bonacor So, Chem. Rev. 2008, 108, 2015.Google Scholar

  • [25]

    A. Dandia, R. Singh, S. Khaturia, C. Mérienne, G. Morgant, A. Loupy, Bioorg. Med. Chem. 2006, 14, 2409.CrossrefGoogle Scholar

  • [26]

    M. Erdélyi, Topics Heterocycl. Chem. 2006, 1, 79.Google Scholar

  • [27]

    A. A. Hassan, Y. R. Ibrahim, E. M. El-Sheref, A. B. Brown, J. Heterocycl. Chem. 2012, 49, 1054.Google Scholar

  • [28]

    A. A. Hassan, Y. R. Ibrahim, E. M. El-Sheref, A. A. Aly, S. Bräse, A. B. Brown, J. Heterocycl. Chem. 2012, 49, 1380.Google Scholar

  • [29]

    A. A. Hassan, E. M. El-Sheref, J. Heterocycl. Chem. 2010, 47, 764.Google Scholar

  • [30]

    A. A. Hassan, A. E. Mourad, K. M. El-Shaieb, A. H. Abou-Zied, D. Döpp, Heteroat. Chem. 2003, 14, 535.Google Scholar

  • [31]

    A. A. Hassan, D. Döpp, J. Heterocycl. Chem. 2006, 43, 593.Google Scholar

  • [32]

    A. A. Hassan, A. E. Mourad, K. M. El-Shaieb, A. H. Abou-Zied, Z. Naturforsch. 2004, 59b, 910.CrossrefGoogle Scholar

  • [33]

    A. Alizadeh, Z. Noaparast, H. Sabahno, N. Zohreh, Helv. Chim. Acta. 2010, 93, 1401.Google Scholar

  • [34]

    R. Markovic, M. M. Pergal, M. Baranac, D. Stanisavljev, M. Stojanvic, Arkivoc 2006, ii, 83.Google Scholar

  • [35]

    S. Bondock, W. Khalifa, A. A. Fadda, Eur. J. Med. Chem. 2007, 42, 948.CrossrefGoogle Scholar

  • [36]

    M. Ashok, B. S. Holla, N. S. Kumari, Eur. J. Med. Chem. 2007, 42, 380.CrossrefGoogle Scholar

  • [37]

    H. Nägele, Monatsh. Chem. 1912, 33, 941.Google Scholar

  • [38]

    L. T. Mizrakh, L. Yu. Polonskaya, A. N. Gvozdetskii, A. M. Vosil’ev, T. M. Ivanova, N. I. Lisina, Khim-Farm Zn. 1987, 21, 322; Chem. Abstr. 1988, 108, 21771r.Google Scholar

  • [39]

    F. D’Angeli, A. Bandel, V. Giormani, J. Org. Chem. 1963, 28, 1596.CrossrefGoogle Scholar

  • [40]

    T. Yabuuchi, M. Hisaki, M. Matuda, R. Kimura, Chem. Pharm. Bull. 1975, 23, 663.CrossrefGoogle Scholar

  • [41]

    K.-D. Müller, U. W. Gerwarth, J. Organomet. Chem. 1976, 110, 15.Google Scholar

  • [42]

    W. Guendel, Dehydag Deutsche Hydrierwerke GmbH, German Pat.1183069, 1964; Chem. Abstr. 1965, 62, 5198e.Google Scholar

  • [43]

    G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.Google Scholar

About the article

Corresponding author: Alaa A. Hassan, Faculty of Science, Chemistry Department, Minia University, 61519 El-Minia, A. R. Egypt, Fax: +2-086-2363011, E-mail: alaahassan2001@mu.edu.eg, alaahassan2001@yahoo.com


Received: 2014-09-19

Accepted: 2014-11-28

Published Online: 2015-03-20

Published in Print: 2015-04-01


Citation Information: Zeitschrift für Naturforschung B, Volume 70, Issue 4, Pages 243–248, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2014-0226.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alaa A. Hassan, Kamal M. A. El-Shaieb, Amal S. Abd El-Aal, Stefan Bräse, and Martin Nieger
Journal of Heterocyclic Chemistry, 2016, Volume 53, Number 6, Page 2025
[2]
Michal Bečka, Mária Vilková, Michal Šoral, Ivan Potočňák, Martin Breza, Tibor Béres, and Ján Imrich
Journal of Molecular Structure, 2017
[3]
Alaa A. Hassan, Kamal M. A. El-Shaieb, Amal S. Abd. El-Aal, Stefan Braese, and Martin Nieger
ChemInform, 2015, Volume 46, Number 33, Page no

Comments (0)

Please log in or register to comment.
Log in