Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences


IMPACT FACTOR 2018: 0.961

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.263
Source Normalized Impact per Paper (SNIP) 2018: 0.505

Online
ISSN
1865-7117
See all formats and pricing
More options …
Volume 71, Issue 1

Issues

Glutamyl-glutamate – a tailor-made chelating ligand for the [Be4O]6+ core in basic beryllium complexes and implications on investigations on the origins of chronic beryllium disease

Raphael J.F. Berger
  • Corresponding author
  • Materialchemie, Paris-Lodron Universität Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria; and Department of Chemistry, P.O. Box 55 FI-0014, University of Helsinki, Finland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Raúl Mera-Adasme
  • Laboratorio de Química Inorgánica Teórica, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-11 | DOI: https://doi.org/10.1515/znb-2015-0157

Abstract

Density functional theory calculations suggest that l-glutamyl-l-glutamate [H-Glu-Glu-H]2– can act as an efficient chelating ligand in basic beryllium carboxylates of type Be4O(RCO2)6. An exergonic energy balance of –10.6 kcal mol–1 for the substitution of two [AcO] anions by one [H-Glu-Glu-OH]2– dianion in Be4O(AcO2)6 has been calculated; for a second and third substitutions, the computed energy release amounts to –9.3, and –11.3 kcal mol–1. The coordination geometry of the complexes shows a trend toward less deviation from local octahedral symmetry with increasing number of [H-Glu-Glu-OH]2– ligands. The implications of these findings for the yet unknown molecular origins of chronic beryllium disease (CBD) are discussed, and a Be4O moiety is suggested as the beryllium species engaged in CBD.

Keywords: berylliosis; dipeptide complex; oxo-tetra-beryllium-carboxylate; oxygen-centered aggregate

References

  • [1]

    R. J. F Berger, M. Hartmann, P. Pyykkö, D. Sundholm, H. Schmidbaur, Inorg. Chem. 2001, 40, 2270.Google Scholar

  • [2]

    R. J. F Berger, M. A. Schmidt, J. Jusélius, D. Sundholm, P. Sirsch, H. Schmidbaur, Z. Naturforsch. 2001, 56b, 979.Google Scholar

  • [3]

    M. Dressel, S. Nogai, R. J. F. Berger, H. Schmidbaur, Z. Naturforsch. 2003, 58b, 173.Google Scholar

  • [4]

    R. J. F. Berger, S. Jana, U. Monkowius, N. W. Mitzel, Z. Naturforsch. 2011, 66b, 1131.CrossrefGoogle Scholar

  • [5]

    R. J. F. Berger, S. Jana, U. Monkowius, N. W. Mitzel, Acta Crystallogr. 2012, E68, m1463.Google Scholar

  • [6]

    R. J. F. Berger, S. Jana, R. Fröhlich, N. W. Mitzel, Z. Naturforsch. 2015, 70b, 279.Google Scholar

  • [7]

    T. M. McCleskey, D. S. Ehler, T. S. Keizer, D. N. Asthagiri, L. R. Lawrence, R. Michalczyk, B. L. Scott, Angew. Chem., 2007, 119, 2723.Google Scholar

  • [8]

    G. M. Clayton, Y. Wang, F. Crawford, A. Novikov, B. T Wimberly, J. S. Kieft, M. T. Falta, N. A. Bowerman, P. Marrack, A. P. Fontenot, S. Dai, J. W. Kappler, Cell 2014, 158, 132.Google Scholar

  • [9]

    J. R. Bill, D. G. Mack, M. T. Falta, L. A. Maier, A. K. Sullivan, F. G. Joslin, A. K. Martin, B. M. Freed, B. L. Kotzin, A. P. Fontenot, J. Immunol. 2005, 175, 7029.Google Scholar

  • [10]

    M. T. Falta, C. Pinilla, D. G. Mack, A. N. Tinega, F. Crawford, M. Giulianotti, R. Santos, G. M. Clayton, Y. Wang, X. Zhang, J. Exp. Med. 2013, 210, 1403.Google Scholar

  • [11]

    F. H. Allen, Acta Crystallogr. 2002, B58, 380.Google Scholar

  • [12]

    H. Kakihana, L. G. Sillé, Acta Chem. Scand. 1956, 10, 985.Google Scholar

  • [13]

    F. Cecconi, C. A. Ghilardi, S. M. A. Orlandini, A. Mederos A, Inorg. Chem. 1998, 37, 146.Google Scholar

  • [14]

    A. D. Becke, J. Chem. Phys. 1993, 98, 5648.Google Scholar

  • [15]

    C. Lee, W. Yang, R. G. Parr, Phys. Rev. 1988, 37, 785.Google Scholar

  • [16]

    R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165.Google Scholar

  • [17]

    F. Furche, R. Ahlrichs, C. Hättig, W. Klopper, M. Sierka, F. Weigend, WIREs Comput. Mol. Sci. 2014, 4, 91.CrossrefGoogle Scholar

  • [18]

    A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571.Google Scholar

  • [19]

    F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.CrossrefGoogle Scholar

  • [20]

    J. P. Perdew, Phys. Rev. B 1986, 33, 8822.Google Scholar

About the article

Corresponding author: Raphael J.F. Berger, Materialchemie, Paris-Lodron Universität Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria; and Department of Chemistry, P.O. Box 55 FI-0014, University of Helsinki, Finland, e-mail:


Received: 2015-10-02

Accepted: 2015-11-17

Published Online: 2015-12-11

Published in Print: 2016-01-01


Citation Information: Zeitschrift für Naturforschung B, Volume 71, Issue 1, Pages 71–75, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2015-0157.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Magnus R. Buchner and Matthias Müller
Zeitschrift für anorganische und allgemeine Chemie, 2018
[2]
Matthias Müller and Magnus R. Buchner
Angewandte Chemie International Edition, 2018

Comments (0)

Please log in or register to comment.
Log in