Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences


IMPACT FACTOR 2018: 0.961

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.263
Source Normalized Impact per Paper (SNIP) 2018: 0.505

Print + Online
See all formats and pricing
More options …
Volume 71, Issue 11

Issues

RE4B4O11F2 (RE = Sm, Tb, Ho, Er): four new rare earth fluoride borates isotypic to Gd4B4O11F2

Matthias Glätzle
  • Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hubert Huppertz
  • Corresponding author
  • Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria, Fax: +43 512 507 57099
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-08 | DOI: https://doi.org/10.1515/znb-2016-0123

Abstract

The rare earth fluoride borates RE4B4O11F2 (RE = Sm, Tb, Ho, Er) were synthesized in a Walker-type multianvil apparatus from the corresponding rare earth oxides and fluorides with boron oxide. Sm4B4O11F2 was obtained under high-pressure/high-temperature conditions of 6 GPa/1100°C, Tb4B4O11F2 at 7.5 GPa/1200°C, and Ho4B4O11F2 and Er4B4O11F2 at 9.5 GPa/1300°C. The single-crystal structure determinations showed that all compounds are isotypic to the known rare earth fluoride borates RE4B4O11F2 (RE = Pr, Nd, Eu, Gd, Dy). They crystallize in the monoclinic space group C2/c (Z = 4). The structure is built up from BO4 tetrahedra as well as BO3 groups connected via common corners. Here, we report about the crystallographic characterization of these new compounds in comparison to the isotypic phases RE4B4O11F2 (RE = Pr, Nd, Eu, Gd, Dy).

Keywords: borate; crystal structure; fluoride; high pressure; rare earth

References

  • [1]

    G. Su, H. Toratani, Jpn. Kokai Tokkyo Koho 1997, 6.Google Scholar

  • [2]

    T. Suzuki, M. Hirano, H. Hosono, J. Appl. Phys. 2002, 91, 4149.Google Scholar

  • [3]

    L. R. P. Kassab, L. C. Courrol, A. S. Morais, S. H. Tatumi, N. U. Wetter. L. Gomes, J. Opt. Soc. Am. B: Opt. Phys. 2002, 19, 2921.Google Scholar

  • [4]

    C. K. Jayasankar, V. Venkatramu, P. Babu, Th. Troster, W. Sievers, G. Wortmann, W. B. Holzapfel, J. Appl. Phys. 2005, 97, 093523-1.Google Scholar

  • [5]

    W. A. Pisarski, J. Pisarska, M. Mączka, W. Ryba-Romanowski, J. Mol. Struct. 2006, 792–293, 207.Google Scholar

  • [6]

    A. V. Ravi Kumar, B. Apparao, N. Veeraiah, Bull. Mater. Sci. 1998, 21, 341.Google Scholar

  • [7]

    H. A. Höppe, Z. Naturforsch. 2015, 70b, 769.Google Scholar

  • [8]

    H. Huppertz, Chem. Commun. 2011, 47, 131.Google Scholar

  • [9]

    A. Pitscheider, PhD thesis, Universität Innsbruck, Innsbruck, 2011.Google Scholar

  • [10]

    A. Haberer, R. Kaindl, O. Oeckler, H. Huppertz, J. Solid State Chem. 2010, 183, 1970.Google Scholar

  • [11]

    P. C. Burns, J. D. Grice, F. C. Hawthorne, Can. Mineral. 1995, 33, 1131.Google Scholar

  • [12]

    A. Haberer, R. Kaindl, H. Huppertz, J. Solid State Chem. 2010, 183, 471.Google Scholar

  • [13]

    A. Pitscheider, M. Enders, H. Huppertz, Z. Naturforsch. 2010, 65b, 1439.Google Scholar

  • [14]

    M. Glätzle, H. Huppertz, Z. Naturforsch. 2013, 68b, 635.Google Scholar

  • [15]

    D. Walker, M. A. Carpenter, C. M. Hitch, Am. Mineral. 1990, 75, 1020.Google Scholar

  • [16]

    D. Walker, Am. Mineral. 1991, 76, 1092.Google Scholar

  • [17]

    H. Huppertz, Z. Kristallogr. 2004, 219, 330.Google Scholar

  • [18]

    D. C. Rubie, Phase Transitions 1999, 68, 431.Google Scholar

  • [19]

    N. Kawai, S. Endo, Rev. Sci. Instrum. 1970, 8, 1178.Google Scholar

  • [20]

    H. Emme, H. Huppertz, Acta Crystallogr. 2005, C61, 29.Google Scholar

  • [21]

    H. Emme, M. Valldor, R. Pöttgen, H. Huppertz, Chem. Mater. 2005, 17, 2707.Google Scholar

  • [22]

    Z. Scalepack, W. Otwinowski, Minor in Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A (Eds.: C. W. Carter Jr., R. M. Sweet), Academic Press, New York, 1997, p. 307.Google Scholar

  • [23]

    G. M. Sheldrick, Shelxs/l-97, Programm Suite for the Solution and Refinement of Crystal Structures, University of Göttingen, Göttingen (Germany) 1997.Google Scholar

  • [24]

    G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.CrossrefGoogle Scholar

  • [25]

    R. D. Shannon, Acta Crystallogr. 1976, A32, 751.Google Scholar

  • [26]

    E. Zobetz, Z. Kristallogr. 1982, 160, 81.Google Scholar

  • [27]

    L. Pauling, J. Am. Chem. Soc. 1947, 69, 542.Google Scholar

  • [28]

    A. Byström, K.-A. Wilhelmi, Acta Chem. Scand. 1951, 5, 1003.Google Scholar

  • [29]

    I. D. Brown, D. Altermatt, Acta Crystallogr. 1985, B41, 244.CrossrefGoogle Scholar

  • [30]

    N. E. Brese, M. O’Keeffe, Acta Crystallogr. 1991, B47, 192.Google Scholar

  • [31]

    N. E. Brese, M. O’Keeffe, Structure and Bonding, Springer-Verlag, Berlin, 1989.Google Scholar

  • [32]

    R. Hoppe, S. Voigt, H. Glaum, J. Kissel, H. P. Müller, K. J. Bernet, J. Less-Common Met. 1989, 156, 105.Google Scholar

  • [33]

    R. Hoppe, Angew. Chem., Int. Ed. Engl. 1966, 5, 96.Google Scholar

  • [34]

    R. Hoppe, Angew. Chem., Int. Ed. Engl. 1970, 9, 25.Google Scholar

  • [35]

    R. Hübenthal, M. Serafin, R. Hoppe, Maple (version 4.0), Program for the Calculation of Distances, Angles, Effective Coordination Numbers, Coordination Spheres, and Lattice Energies, University of Gießen, Gießen (Germany) 1993.Google Scholar

  • [36]

    Y. Tabira, R. L. Withers, J. Solid State Chem. 1999, 148, 205.Google Scholar

  • [37]

    C. T. Prewitt, R. D. Shannon, Acta Crystallogr. 1968, B24, 869.Google Scholar

  • [38]

    G.-Q. Wu, R. Hoppe, Z. Anorg. Allg. Chem. 1984, 514, 99.Google Scholar

  • [39]

    E. Hubbert-Paletta, Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem. 1968, 363, 145.Google Scholar

  • [40]

    M. Piotrowski, A. Murasik, Phys. Stat. Sol. 1985, A89, 571.Google Scholar

  • [41]

    S. A. Hering, H. Huppertz, Z. Naturforsch. 2009, 64b, 1032.Google Scholar

  • [42]

    M. Piotrowski, H. Ptasiewicz-bak, A. Murasik, Phys. Stat. Sol. 1979, A55, K163.CrossrefGoogle Scholar

  • [43]

    H. R. Hoekstra, Inorg. Chem. 1966, 5, 754.Google Scholar

  • [44]

    A. Zalkin, D. H. Templeton, J. Am. Chem. Soc. 1953, 75, 2453.Google Scholar

About the article

Received: 2016-05-05

Accepted: 2016-05-20

Published Online: 2016-07-08

Published in Print: 2016-11-01


Citation Information: Zeitschrift für Naturforschung B, Volume 71, Issue 11, Pages 1105–1113, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2016-0123.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in