Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences


IMPACT FACTOR 2018: 0.961

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.263
Source Normalized Impact per Paper (SNIP) 2018: 0.505

Online
ISSN
1865-7117
See all formats and pricing
More options …
Volume 71, Issue 11

Issues

Purpureone, an antileishmanial ergochrome from the endophytic fungus Purpureocillium lilacinum

Bruno Ndjakou Lenta
  • Corresponding author
  • Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1, P.O. Box 47, Yaoundé, Cameroon
  • Chemistry Department, Organic and Bioorganic Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jules Ngatchou / Marcel Frese
  • Chemistry Department, Organic and Bioorganic Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Flora Ladoh-Yemeda / Steve Voundi / Flore Nardella
  • Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Labex Médalis, Faculté de Pharmacie, 67412 Illkirch, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carmela Michalek
  • Chemistry Department, Organic and Bioorganic Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel Wibberg / Silvère Ngouela / Etienne Tsamo / Marcel Kaiser
  • Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, CH-4002 Basel, Switzerland
  • University of Basel, CH-4003 Basel, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jörn Kalinowski / Norbert Sewald
  • Chemistry Department, Organic and Bioorganic Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-27 | DOI: https://doi.org/10.1515/znb-2016-0128

Abstract

The ethyl acetate extracts prepared from the mycelia of three endophytic fungi Purpureocillium lilacinum, Aspergillus sp., and Fusarium sp., isolated from the roots of Rauvolfia macrophylla (Apocynaceae) were screened for their antiprotozoal activity in vitro against Plasmodium falciparum (NF54), Leishmania donovani, Trypanosoma brucei rhodesiense, and Trypanosoma cruzi. Amongst these extracts, the one from P. lilacinum showed potent antileishmanial activity against L. donovani (IC50 value of 0.174 μg mL−1) with good selectivity (SI=94.9) toward the L6 cell line, whereas the other extracts were inactive and not selective. The fractionation and purification of the active extract from P. lilacinum by column chromatography over silica gel yielded a new ergochromone derivative (1), together with six known compounds: (22E,24R)-stigmasta-5,7,22-trien-3-β-ol (2), (22E,24R)-stigmasta-4,6,8(14),22-tetraen-3-one (3), emodin (4), chrysophanol (5), aloe-emodin (6), and palmitic acid, whose structures were elucidated spectroscopically. Compound 1 was tested in vitro for its antiparasitic activities against the above listed parasites and for its antimicrobial activity against Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Escherichia coli, Providencia stuartii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The compound displayed potent antileishmanial activity against L. donovani with an IC50 value of 0.63 μg mL−1 (0.87 μm) with good selectivity (SI=49.5) toward the L6 cell line. It also exhibited good antibacterial activity against three of the tested microbial strains B. cereus, E. coli ATCC879, and P. stuartii ATCC29916 with minimum inhibitory concentrations below 62.6 μg mL−1. Compound 1 is thus a promising active compound that could be investigated for antileishmanial and antimicrobial drug development.

This article offers supplementary material which is provided at the end of the article.

Keywords: antimicrobial activity; antiparasitic activitiy; endophytic fungus; Purpureocillium lilacinum; purpureone

References

  • [1]

    L. Zhou, J. Zhao, T. Shan, X. Cai, Y. Peng, Mini Rev. Med. Chem. 2010, 10, 977.Google Scholar

  • [2]

    J. B. Gloer in Applications of Fungal Ecology in the Search for New Bioactive Natural Products in The Mycota. Environmental and Microbial Relationships (Eds.: D. T. Wicklow, B. E. Soderstrom), Springer-Verlag, New York, 1997, p. 249.Google Scholar

  • [3]

    N. A. J. C. Furtado, M. T. Pupo, I. Carvalho, V. L. Campo, M. C. T. Duarte, J. K. Bastos, J. Braz. Chem. Soc. 2005, 16, 1448.Google Scholar

  • [4]

    D. L. Hawksworth, Mycol. Res. 1991, 95, 641.Google Scholar

  • [5]

    D. L. Hawksworth, Mycol. Res. 2001, 105, 1422.Google Scholar

  • [6]

    J. A. Castro, Hum. Exp. Toxicol. 2006, 25, 471.Google Scholar

  • [7]

    S. L. Croft, K. Seifert, V. Yardley, Indian J. Med. Res. 2006, 123, 399.Google Scholar

  • [8]

    R. Brun, R. Don, R. T. Jacobs, M. Z. Wang, M. P. Barrett, Future Microbiol. 2011, 6, 677.Google Scholar

  • [9]

    N. B. Lenta, C. Vonthron-Sénécheau, S. R. Fongang, F. Tantangmo, S. Ngouela, M. Kaiser, E. Tsamo, R. Anton, B. Weniger, J. Ethnopharmacol. 2007, 111, 8.Google Scholar

  • [10]

    M. M. A. Amer, W. E. Court, Planta Med. 1980, 40, 8.Google Scholar

  • [11]

    E. S Elkhayat, S. R. M. Ibrahim, G. A. Mohamed, S. A. Ross, Nat. Prod. Res. 2016, 30, 814.Google Scholar

  • [12]

    R. Liu, A. Li, A. Sun, J. Chrom. A. 2004, 1052, 217.Google Scholar

  • [13]

    J. Q. Gu, C. M. Eppler, G. Montenegro, S. D. Timmins, B. N. Timmermann, Z. Naturforsch. 2005, 60c, 527.Google Scholar

  • [14]

    H. H. F. Koolen, L. S. Menezes, M. P. Souza, F. M. A. Silva, F. G. O. Almeida, A. Q. L. De Souza, A. Nepel, A. Barison, F. H. Da Silva, D. E. Evangelista, A. D. L. De Souza, Braz. Chem. Soc. 2013, 24, 880.Google Scholar

  • [15]

    B. Proksa, D. Uhrín, T. Liptaj, M. Šturdíková, Phytochemistry 1998, 48, 1161.Google Scholar

  • [16]

    V. N. Gonçalves, C. R. Carvalho, S. Johann, G. Mendes, T. M. A. Alves, C. L. Zani, P. A. S. Junior, S. M. F. Murta, A. J. Romanha, C. L. Cantrell, C. A. Rosa, L. H. Rosa, Polar Bio 2015, 38, 1143.Google Scholar

  • [17]

    A. R. B. Ola, A. Debbab, A. H. Aly, A. Mandi, I. Zerfass, A. Hamacher, M. U. Kassack, H. Brötz-Oesterhelt, T. Kurtan, P. Proksch, Tetrahedron Lett. 2014, 55, 1020.Google Scholar

  • [18]

    T. Wezeman, S. Brase, K. S. Masters, Nat. Prod. Rep. 2015, 32, 6.Google Scholar

  • [19]

    A. Madariaga-Mazón, M. González-Andrade, M. del Carmen González, A. E. Glenn, C. M. Cerda-García-Rojas, R. Mata, J. Nat. Prod. 2013, 76, 1454.Google Scholar

  • [20]

    A. E. Hay, J. Merza, A. Landreau, M. Litaudon, F. Pagniez, P. Le Pape, P. Richomme, Fitoterapia 2008, 79, 42.Google Scholar

  • [21]

    J. X. Kelly, M. V. Ignatushchenko, H. G. Bouwer, D. H. Peyton, D. J. Hinrichs, R. W. Winter, M. Riscoe, Mol. Biochem. 2003, 126, 43.Google Scholar

  • [22]

    M. V. Ignatushchenko, Antimalarial and Antileishmanial Action of Xanthones: Host-Parasite Differences in Heme Metabolism as Chemotherapeutic Targets, PhD thesis, Oregon Health Sciences University, Portland, OR (USA) 1998, pp 140.Google Scholar

  • [23]

    I. C. Pimentel, C. Glienke-Blanco, J. Gabardo, R. M. Stuart, J. L. Azevedo, Braz. Arch. Biol. Technol. 2006, 49, 705.Google Scholar

  • [24]

    R. Khan, S. Shahzad, M. I. Choudhary, S. A. Khan, A. Pakistan J. Bot. 2010, 42, 1281.Google Scholar

  • [25]

    T. J. White, T. Bruns, S. Lee, J. W. Taylor, Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in PCR Protocols: A Guide to Methods and Applications (Eds.: M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. J. White), Academic Press, New York, 1990, p. 315.Google Scholar

  • [26]

    I. Orhan, B. Sener, M. Kaiser, R. Brun, D. Tasdemir. Mar Drugs 2010, 8, 47.Google Scholar

  • [27]

    CLSI, Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th edition, CLSI document M02-A11. Clinical and Laboratory Standards Institute, Wayne, PA (USA) 2012.Google Scholar

  • [28]

    CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard, 9th edition, CLSI document M07-A9. Clinical and Laboratory Standards Institute, Wayne, PA (USA) 2012.Google Scholar

  • [29]

    O. S. Voundi, M. Nyegue, I. Lazar, D. Raducanu, F. Ndoye, S. Marius, F. X. Etoa, Foodborne Pathog. Dis. 2015, 12, 551.Google Scholar

About the article

Received: 2016-05-22

Accepted: 2016-07-13

Published Online: 2016-09-27

Published in Print: 2016-11-01


Citation Information: Zeitschrift für Naturforschung B, Volume 71, Issue 11, Pages 1159–1167, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2016-0128.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Fatma Kaaniche, Abdelaaty Hamed, Ahmed S. Abdel-Razek, Daniel Wibberg, Negera Abdissa, Imene Zendah El Euch, Noureddine Allouche, Lotfi Mellouli, Mohamed Shaaban, Nobert Sewald, and Vijai Gupta
PLOS ONE, 2019, Volume 14, Number 6, Page e0217627
[2]
Guihong Yu, Guangwei Wu, Zichao Sun, Xiaomin Zhang, Qian Che, Qianqun Gu, Tianjiao Zhu, Dehai Li, and Guojian Zhang
Marine Drugs, 2018, Volume 16, Number 9, Page 335
[3]
Wei Fang, Jianjiao Wang, Junfeng Wang, Liqiao Shi, Kunlong Li, Xiuping Lin, Yong Min, Bin Yang, Lan Tang, Yonghong Liu, and Xuefeng Zhou
Journal of Natural Products, 2018

Comments (0)

Please log in or register to comment.
Log in