Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

IMPACT FACTOR 2018: 0.961

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.263
Source Normalized Impact per Paper (SNIP) 2018: 0.505

See all formats and pricing
More options …
Volume 71, Issue 11


Li2Pt3Se4: a new lithium platinum selenide with jaguéite-type crystal structure by multianvil high-pressure/high-temperature synthesis

Gunter Heymann
  • Corresponding author
  • Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria, Fax: +43(0)512-507 57099
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elisabeth Selb
  • Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-15 | DOI: https://doi.org/10.1515/znb-2016-0165


The monoclinic lithium platinum selenide Li2Pt3Se4 was obtained via a multianvil high-pressure/high-temperature route at 8 GPa and 1200°C starting from a stoichiometric mixture of lithium nitride, selenium, and platinum. The structure of the ternary alkali metal-transition metal-selenide was refined from single-crystal X-ray diffractometer data: P21/c (no. 14), a=525.9(2), b=1040.6(2), c=636.5(2) pm, β=111.91(1)°, R1=0.0269, wR2=0.0569 (all data) for Li2Pt3Se4. Furthermore, the isostructural mineral phases jaguéite (Cu2Pd3Se4) and chrisstanleyite (Ag2Pd3Se4) were reinvestigated in their ideal stoichiometric ratio. The syntheses of the mineral phases were also carried out under multianvil conditions. Single-crystal data revealed a hitherto not described structural disorder of the transition metal atoms.

Keywords: chrisstanleyite; crystal structure; high-pressure; jaguéite; transition metal-selenide


  • [1]

    W. H. Paar, D. Topa, E. Makovicky, R. J. Sureda, M. K. de Brodtkorb, E. H. Nickel, H. Putz, Can. Mineral. 2004, 42, 1745.Google Scholar

  • [2]

    W. H. Paar, A. C. Roberts, A. J. Criddle, D. Topa, Mineral. Mag. 1998, 62, 257.Google Scholar

  • [3]

    D. Topa, E. Makovicky, T. Balić-Žunić, Can. Mineral. 2006, 44, 497.Google Scholar

  • [4]

    A. Vymazalová, D. A. Chareev, A. V. Kristavchuk, F. Laufek, M. Drábek, Can. Mineral. 2014, 52, 77.Google Scholar

  • [5]

    F. Laufek, A. Vymazalová, D. A. Chareev, A. V. Kristavchuk, Q. Lin, J. Drahokoupil, T. M. Vasilchikova, J. Solid State Chem. 2011, 184, 2794.Google Scholar

  • [6]

    F. Laufek, A. Vymazalová, D. A. Chareev, A. V. Kristavchuk, J. Drahokoupil, M. V. Voronin, Powder Diffr. 2013, 28, 13.Google Scholar

  • [7]

    G. Heymann, O. Niehaus, H. Krüger, P. Selter, G. Brunklaus, R. Pöttgen, J. Solid State Chem. 2016, 242, 87.Google Scholar

  • [8]

    R. Ang, Y. Miyata, E. Ieki, K. Nakayama, T. Sato, Y. Liu, W. J. Lu, Y. P. Sun, T. Takahashi, Phys. Rev. B: Condens. Matter 2013, 88, 115145.Google Scholar

  • [9]

    S. Nagata, T. Atake, J. Therm. Anal. Calorim. 1999, 57, 807.Google Scholar

  • [10]

    A. P. Ramirez, R. J. Cava, J. Krajewski, Nature 1997, 386, 156.Google Scholar

  • [11]

    O. Lang, C. Felser, R. Seshadri, F. Renz, J. M. Kiat, J. Ensling, P. Gütlich, W. Tremel, Adv. Mater. 2000, 12, 65.Google Scholar

  • [12]

    R. Pocha, C. Löhnert, D. Johrendt, J. Solid State Chem. 2007, 180, 191.Google Scholar

  • [13]

    W. Tremel, H. Kleinke, V. Derstroff, C. Reisner, J. Alloys Compd. 1995, 219, 73.Google Scholar

  • [14]

    T. Hughbanks, J. Alloys Compd. 1995, 229, 40.Google Scholar

  • [15]

    J. Cabana, L. Monconduit, D. Larcher, M. R. Palacín, Adv. Mater. 2010, 22, E170.Google Scholar

  • [16]

    D. Chen, G. Ji, B. Ding, Y. Ma, B. Qu, W. Chen, J. Y. Lee, Ind. Eng. Chem. Res. 2014, 53, 17901.Google Scholar

  • [17]

    X. Xu, W. Liu, Y. Kim, J. Cho, Nano Today 2014, 9, 604.Google Scholar

  • [18]

    H. Huppertz, Z. Kristallogr. 2004, 219, 330.Google Scholar

  • [19]

    D. Walker, M. A. Carpenter, C. M. Hitch, Am. Mineral. 1990, 75, 1020.Google Scholar

  • [20]

    D. Walker, Am. Mineral. 1991, 76, 1092.Google Scholar

  • [21]

    D. C. Rubie, Phase Transit. 1999, 68, 431.Google Scholar

  • [22]

    P. Thompson, D. E. Cox, J. B. Hastings, J. Appl. Crystallogr. 1987, 20, 79.Google Scholar

  • [23]

    R. A. Young, P. Desai, Arch. Nauki. Mater. 1989, 10, 71.Google Scholar

  • [24]

    Z. Otwinowski, W. Minor in Methods in Enzymology, Vol. 276, (Eds.: C. W. Charles, J. Carter and M. Sweet), Academic Press, USA, 1997, p. 307.Google Scholar

  • [25]

    Apex2 (version 2014.11-0), Saint (version 8.34A), Sadabs (version 2014/5), and Cell_Now (version 2008/4), Bruker AXS GmbH, Karlsruhe (Germany).

  • [26]

    A. Gibaud, M. Topić, G. Corbel, C. I. Lang, J. Alloys Compd. 2009, 484, 168.Google Scholar

  • [27]

    F. Grønvold, H. Haraldsen, A. Kjekshus, Acta Chem. Scand. 1960, 14, 1879.Google Scholar

  • [28]

    P. Matković, K. Schubert, J. Less-Common Met. 1977, 55, 185.Google Scholar

  • [29]

    G. M. Sheldrick, Shelxs-2013, Program for the Solution of Crystal Structures, University of Göttingen, Göttingen (Germany) 2013.Google Scholar

  • [30]

    G. M. Sheldrick, Shelxl-2013, Program for the Refinement of Crystal Structures – Multi-CPU Version, University of Göttingen, Göttingen (Germany) 2013.Google Scholar

  • [31]

    G. Sheldrick, Acta Crystallogr. 2015, C71, 3–8.Google Scholar

  • [32]

    N. Wiberg, Lehrbuch der Anorganischen Chemie, de Gruyter, Berlin, 2008.Google Scholar

About the article

Received: 2016-07-25

Accepted: 2016-08-03

Published Online: 2016-10-15

Published in Print: 2016-11-01

Citation Information: Zeitschrift für Naturforschung B, Volume 71, Issue 11, Pages 1095–1104, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2016-0165.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in