Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences


IMPACT FACTOR 2018: 0.961

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.263
Source Normalized Impact per Paper (SNIP) 2018: 0.505

Online
ISSN
1865-7117
See all formats and pricing
More options …
Volume 72, Issue 10

Issues

Unexpected distinction in reactivity of pentafluorobenzenesulfonyl halides toward organolithiums and organomagnesium halides

Vadim V. Bardin
  • Corresponding author
  • N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 9 Lavrentiev Ave., 630090 Novosibirsk, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander M. Maksimov
  • N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-26 | DOI: https://doi.org/10.1515/znb-2017-0092

Abstract

C6F5SO2Cl reacts with organolithiums and organomagnesium halides RM (R=Me, Bu, Ph; M=Li, MgX) to give mainly C6F5H and C6F5Cl. C6F5SO2Br and PhMgBr form C6F5H and (C6F5S)2. This is in contrast to known transformations of them which yield exclusively C6F5SO2Nu under the action of O- and N-nucleophiles. Alternatively, C6F5SO2F is converted to C6F5SO2R and 4-BuC6F4SO2F or 2-PhC6F4SO2Ph under the same conditions. When R=Me, minor amounts of (C6F5SO2)2CH2 and 4-C6F5SO2CH2C6F4SO2F form in addition to C6F5SO2CH3.

Keywords: C-nucleophiles; organolithium; organomagnesium halides; pentafluorobenzenesulfonyl halides

References

  • [1]

    S. Patai, Z. Rappoport, C. Stirling (Eds.), The Chemistry of Sulfones and Sulfoxides, Wiley, New York, 1988.Google Scholar

  • [2]

    T. Durst in Comprehensive Organic Chemistry, Vol. 3 (Eds.: D. H. R. Barton, W. D. Ollis), Paragon Press, New York, 1979, pp. 171–213.Google Scholar

  • [3]

    W. Steinkopf, P. Jaeger, J. Prakt. Chem. 1930, 128, 63Google Scholar

  • [4]

    A. I. Khodair, A. A. Abdel-Wahab, A. M. El-Khawaga, Z. Naturforsch. 1978, 33b, 403Google Scholar

  • [5]

    L. L. Frye, E. L. Sullivan, K. P. Cusack, J. M. Funaro, J. Org. Chem. 1992, 57, 697CrossrefGoogle Scholar

  • [6]

    D. W. Cowie, D. T. Gibson, J. Chem. Soc. 1934, 46, 46.Google Scholar

  • [7]

    D. T. Gibson, J. Prakt. Chem. 1935, 142, 218.CrossrefGoogle Scholar

  • [8]

    H. Fukuda, F. J. Frank, W. E. Truce, J. Org. Chem. 1963, 28, 1420.Google Scholar

  • [9]

    R. J. Koshar, R. A. Mitsch, J. Org. Chem. 1973, 38, 3358.CrossrefGoogle Scholar

  • [10]

    Y. Shirota, T. Nagai, N. Tokura, Tetrahedron 1969, 25, 3193.CrossrefGoogle Scholar

  • [11]

    E. Wedekind, D. Schenk, Chem. Ber. 1921, 54, 1604.CrossrefGoogle Scholar

  • [12]

    H. Gilman, R. F. Foerthergill, J. Am. Chem. Soc. 1929, 51, 3501.CrossrefGoogle Scholar

  • [13]

    R. J. W. Le Fèvre, P. J. Markham, J. Chem. Soc. 1934, 703.Google Scholar

  • [14]

    J. T. Joseph, A. M. Sajith, R. C. Ningegowda, A. Nagaraj, K. S. Rangappa, S. Shashikanth, Tetrahedron Lett. 2015, 56, 5106.CrossrefGoogle Scholar

  • [15]

    G. Wang, C. Li, L. He, K. Lei, F. Wang, Y. Pu, Z. Yang, D. Cao, L. Ma, J. Chen, Y. Sang, X. Liang, M. Xiang, A. Peng, Y. Wei, L. Chen, Bioorg. Med. Chem. 2014, 22, 2060.CrossrefGoogle Scholar

  • [16]

    I. Mizota, T. Maeda, M. Shimizu, Tetrahedron 2015, 71, 5793.CrossrefGoogle Scholar

  • [17]

    A. Montero, E. Benito, B. Herradon, Tetrahedron Lett. 2010, 51, 277.CrossrefGoogle Scholar

  • [18]

    A. Flohr, A. Aemissegger, D. Hilvert, J. Med. Chem. 1999, 42, 2633.CrossrefGoogle Scholar

  • [19]

    Q.-Y. Chen, M.-F. Chen, J. Chem. Soc., Perkin Trans. 1991, 2, 1071.Google Scholar

  • [20]

    E. S. Lewis, M. J. Smith, J. J. Christie, J. Org. Chem. 1983, 48, 2527.CrossrefGoogle Scholar

  • [21]

    J. H. Marriott, A. M. M. Barber, I. R. Hardcastle, M. G. Rowlands, R. M. Grimshaw, S. Neidle, M. Jarman, J. Chem. Soc., Perkin Trans. 2000, 1, 4265.Google Scholar

  • [22]

    T. Kull, R. S. Peters, Adv. Synth. Cat. 2007, 349, 1647.CrossrefGoogle Scholar

  • [23]

    Y. Kageyama, R. Ohshima, K. Sakurama, Y. Fujiwara, Y. Tanimoto, Y. Yamada, S. Aoki, Chem. Pharm. Bull. 2009, 57, 1257.CrossrefGoogle Scholar

  • [24]

    Y. F. Shealy, C. A. Krauth, R. F. Struck, J. A. Montgomery, J. Med. Chem. 1983, 26, 1168.CrossrefGoogle Scholar

  • [25]

    H. Tanida, T. Irie, Y. Hayashi, J. Org. Chem. 1984, 49, 2527.CrossrefGoogle Scholar

  • [26]

    W. A. Sheppard, S. S. Foster, J. Fluorine Chem. 1972, 2, 53.CrossrefGoogle Scholar

  • [27]

    V. Dudutienė, A. Zubrienė, A. Smirnov, J. Gylytė, D. Timm, E. Manakova, S. Gražulis, D. Matulis, Bioorg. Med. Chem. 2013, 21, 2093.CrossrefGoogle Scholar

  • [28]

    S. E. Denmark, B. L. Christenson, S. P. O‘Connor, Tetrahedron Lett. 1995, 36, 2219.CrossrefGoogle Scholar

  • [29]

    H. Takakashi, T. Kawakita, M. Ohno, M. Yosoka, S. Kobayashi, Tetrahedron 1992, 48, 5691.CrossrefGoogle Scholar

  • [30]

    M. Penso, D. Albanese, D. Landini, V. Lupi, A. Tagliabue, J. Org. Chem. 2008, 73, 6686.CrossrefGoogle Scholar

  • [31]

    V. V. Bardin, O. N. Loginova, G. G. Furin, Izv. Sib. Otd. Akad. Nauk SSSR. Ser. Khim. Nauk 1988, 1, 77; Chem. Abstr. 1989, 110, 7285.Google Scholar

  • [32]

    H. C. Fielding, I. M. Shirley, J. Fluorine Chem. 1992, 59, 15.CrossrefGoogle Scholar

  • [33]

    A. O. Miller, G. G. Furin, J. Fluorine Chem. 1995, 75, 169.CrossrefGoogle Scholar

  • [34]

    G. G. Furin, S. A. Krupoder, G. G. Yakobson, Izv. Sib. Otd. Akad. Nauk SSSR. Ser. Khim. Nauk 1976, 5, 147; Chem. Abstr. 1977, 86, 72110.Google Scholar

  • [35]

    R. A. Bredikhin, PhD Thesis, Novosibirsk Inst. Org. Chem., Novosibirsk, 2013.Google Scholar

  • [36]

    N. A. Orlova, T. N. Gerasimova, E. P. Fokin, J. Org. Chem. USSR (Engl. Transl.) 1980, 16, 905; Zh. Org. Khim. 1980, 16, 1029.Google Scholar

  • [37]

    M. K. Nielsen, C. R. Ugaz, W. Li, A. G. Doyle, J. Am. Chem. Soc. 2015, 137, 9571.CrossrefGoogle Scholar

  • [38]

    I. L. Knunyants, G. G. Yakobson (Eds.), Syntheses of Fluoroorganic Compounds, Springer, Berlin, 1985, pp. 184–185.Google Scholar

  • [39]

    V. E. Platonov, R. A. Bredikhin, A. M. Maksimov, V. V. Kireenkov, J. Fluorine Chem. 2010, 131, 13.CrossrefGoogle Scholar

  • [40]

    R. A. Bredikhin, A. M. Maksimov. V. E. Platonov, Fluorine Notes 2010, 73.Google Scholar

  • [41]

    S. Berger, S. Braun, H.-O. Kalinowski, NMR-Spektroskopie von Nichtmetallen, Bd. 4,19 F-NMR-Spektroskopie, Thieme, Stuttgart, 1994, p. 226.Google Scholar

  • [42]

    V. A. Shreider, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1984, 33, 1675; Izv. Akad. Nauk SSSR. Ser. Khim. 1984, 1832.CrossrefGoogle Scholar

  • [43]

    A. A. Bogachev, L. S. Kobrina, G. G. Yakobson, J. Org. Chem. USSR (Engl. Transl.) 1984, 20, 198; Zh. Org. Khim. 1984, 20, 218.Google Scholar

  • [44]

    K. Okamoto, T. Wataluki, M.Sumino, US Pat. 2012/130107 A1, 2012.Google Scholar

  • [45]

    S. S. Dua, R. D. Howells, H.Gilman, J. Fluorine Chem. 1974, 4, 381.CrossrefGoogle Scholar

  • [46]

    D. V. Davydov, I. P. Beletskaya, Metallorg. Khim. 1988, 1, 899; Chem. Abstr. 1989, 110, 231187.Google Scholar

About the article

Received: 2017-05-29

Accepted: 2017-07-20

Published Online: 2017-09-26

Published in Print: 2017-09-26


Citation Information: Zeitschrift für Naturforschung B, Volume 72, Issue 10, Pages 731–737, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2017-0092.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in