Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences


IMPACT FACTOR 2018: 0.961

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.263
Source Normalized Impact per Paper (SNIP) 2018: 0.505

Online
ISSN
1865-7117
See all formats and pricing
More options …
Volume 72, Issue 11

Issues

On the dimorphism of Pr6Mo10O39

Daniel Rudolph
  • Institute for Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sonja Laufer
  • Institute for Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ingo Hartenbach
  • Corresponding author
  • Institute for Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-07 | DOI: https://doi.org/10.1515/znb-2017-0055

Abstract

Attempts to synthesize Pr4Mo7O27 using Pr, Pr6O11 and MoO3 in a molar ratio of 8:6:77 led to a main product of scheelite-type Pr0.667[MoO4] and few single crystals of the triclinic A-type Pr6Mo10O39. The latter crystallizes in space group P1̅ (a=945.25(1), b=1058.49(2), c=1815.16(3) pm; α=104.149(1), β=95.220(1), γ=102.617(1)°, Z=2). Its crystal structure comprises six crystallographically independent Pr3+ cations, eight tetrahedral [MoO4]2− units, and one [Mo2O7]2− entity. The cations display coordination numbers of seven (1×) and eight (5×), while the [MoO4]2− tetrahedra are surrounded by five Pr3+ cations each. The [Mo2O7]2− anions exhibit a coordination environment of seven Pr3+ cations. The attempt to synthesize PrF[MoO4] using PrOF (from in situ thermal decomposition of PrF[CO3]) as reagent did not lead to the desired product but to monoclinic B-type Pr6Mo10O39. This slightly less dense modification compared to its triclinic analogue crystallizes in space group C2/c (a=1247.93(3), b=1989.68(6), c=1392.52 (4) pm, β=100.505(2)°, Z=4) with three crystallographically independent Pr3+ cations, four [MoO4]2− tetrahedra, and again one [Mo2O7]2− unit in the crystal structure. Thus, both Pr6Mo10O39 modifications are better described with the structured formula Pr6[MoO4]8[Mo2O7]. The coordination numbers around the Pr3+ cations are seven (1×) and eight (2×) while all four [MoO4]2− anions are again surrounded by five Pr3+ cations each. Six of the latter represent the coordination environment around the [Mo2O7]2− entities. Besides the thorough comparison of the crystal structures single crystal Raman spectra were recorded for both Pr6Mo10O39 phases.

Keywords: crystal structure; oxidomolybdates; praseodymium; Raman spectroscopy

Dedicated to: Professor Dietrich Gudat on the occasion of his 60th birthday.

References

  • [1]

    E. T. Keve, S. C. Abrahams, J. L. Bernstein, J. Chem. Phys. 1971, 54, 3185.CrossrefGoogle Scholar

  • [2]

    W. Jeitschko, Acta Crystallogr. 1972, B28, 60.Google Scholar

  • [3]

    W. Jeitschko, Acta Crystallogr. 1973, B29, 2074.Google Scholar

  • [4]

    S. C. Abrahams, C. Svensson, J. L. Bernstein, J. Chem. Phys. 1980, 72, 4278.CrossrefGoogle Scholar

  • [5]

    K. Boulahya, M. Parras, J. M. Gonzales Calbet, Eur. J. Inorg. Chem. 2005, 2005, 967.CrossrefGoogle Scholar

  • [6]

    I. Hartenbach, Z. Anorg. Allg. Chem. 2008, 634, 2044.Google Scholar

  • [7]

    S. Dorzhieva, I. Chumak, A. Sarapulova, D. Mikhailova, J. Bazarova, H. Ehrenberg, Acta Crystallogr. 2011, C47, 2026.Google Scholar

  • [8]

    I. Hartenbach, Th. Schleid, S. Strobel, Z. Anorg. Allg. Chem. 2016, 642, 1029.Google Scholar

  • [9]

    R. G. Dickinson, J. Am. Chem. Soc. 1920, 42, 85.CrossrefGoogle Scholar

  • [10]

    P. B. Jamieson, S. C. Abrahams, J. L. Bernstein, J. Chem. Phys. 1969, 50, 86.CrossrefGoogle Scholar

  • [11]

    T. Schustereit, S. L. Müller, Th. Schleid, I. Hartenbach, Crystals 2011, 1, 244.CrossrefGoogle Scholar

  • [12]

    T. Schustereit, Th. Schleid, I. Hartenbach, Acta Crystallogr. 2013, E69, i7.Google Scholar

  • [13]

    T. Schustereit, Th. Schleid, I. Hartenbach, Z. Kristallogr. 2015, Suppl. 35, 82.Google Scholar

  • [14]

    G. D. Fallon, B. M. Gatehouse, J. Solid State Chem. 1982, 44, 156.CrossrefGoogle Scholar

  • [15]

    V. A. Efremov, N. N. Davydova, V. K. Trunov, Zh. Neorg. Khim. 1988, 33, 3001.Google Scholar

  • [16]

    V. A. Efremov, N. N. Davydova, L. Z. Gokhman, A. A. Evdokimov, V. K. Trunov, Zh. Neorg. Khim. 1988, 33, 3005.Google Scholar

  • [17]

    F. Dubois, F. Goutenoire, Y. Laligant, E. Suard, P. Lacorre, J. Solid State Chem. 2001, 159, 228.CrossrefGoogle Scholar

  • [18]

    H. Naruke, T. Yamase, Acta Crystallogr. 2001, E57, i106.Google Scholar

  • [19]

    H. Naruke, T. Yamase, Inorg. Chem. 2002, 41, 6514.CrossrefGoogle Scholar

  • [20]

    H. Naruke, T. Yamase, J. Solid State Chem. 2003, 173, 407.CrossrefGoogle Scholar

  • [21]

    R. S. Barker, I. R. Evans, J. Solid State Chem. 2006, 179, 1918.CrossrefGoogle Scholar

  • [22]

    D. Zhao, F.-F. Li, Y.-M. Yao, C.-A. Huan, E.-X. Zhao, Acta Crystallogr. 2010, E66, i85.Google Scholar

  • [23]

    H. Naruke, T. Yamase, J. Solid State Chem. 2001, 161, 85.CrossrefGoogle Scholar

  • [24]

    H. Naruke, T. Yamase, Acta Crystallogr. 2002, E58, i62.Google Scholar

  • [25]

    B. van der Wolf, P. Held, P. Becker, Acta Crystallogr. 2009, E65, i59.Google Scholar

  • [26]

    Th. Schleid, C. Dobos-Wolfer, S. Strobel, I. Hartenbach, Z. Kristallogr. 2013, Suppl. 33, 87.Google Scholar

  • [27]

    B. M. Gatehouse, R. Same, J. Solid State Chem. 1978, 25, 115.Google Scholar

  • [28]

    Th. Schleid, I. Hartenbach, Z. Anorg. Allg. Chem. 2012, 638, 1600.Google Scholar

  • [29]

    D. Rudolph, Bachelor Thesis, University of Stuttgart, Stuttgart 2012.Google Scholar

  • [30]

    T. Schustereit, Th. Schleid, I. Hartenbach, Eur. J. Inorg. Chem. 2014, 2014, 5145.CrossrefGoogle Scholar

  • [31]

    O. Janka, Th. Schleid, Eur. J. Inorg. Chem. 2009, 2009, 357.CrossrefGoogle Scholar

  • [32]

    S. Laufer, Exam Thesis, University of Stuttgart, Stuttgart 2010.Google Scholar

  • [33]

    W. Herrendorf, H. Bärnighausen, Habitus, Program for the optimization of the crystal shape for numerical absorption correction, Universities of Karlsruhe and Gießen, Karlsruhe, Gießen (Germany) 1993, 1996, in x-shape (version 1.06), STOE & Cie GmbH, Darmstadt (Germany) 1999.Google Scholar

  • [34]

    G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.Google Scholar

  • [35]

    T. Hahn, A. J. C. Wilson, International Tables for Crystallography, Kluwer Academic Publishers, Boston, Dordrecht, London 1992.Google Scholar

  • [36]

    R. Wolf, R. Hoppe, Z. Anorg. Allg. Chem. 1985, 529, 61.CrossrefGoogle Scholar

  • [37]

    K. Stadnicka, J. Haber, R. Kozlowski, Acta Crystallogr. 1977, B33, 3859.Google Scholar

  • [38]

    J. Felsche, Z. Kristallogr. 1971, 38, 364.Google Scholar

  • [39]

    G. Busca, J. Raman Spectrosc. 2002, 33, 348.CrossrefGoogle Scholar

  • [40]

    R. G. Brown, S. D. Ross, Spectrochim. Acta, Part A 1972, 28, 1263.CrossrefGoogle Scholar

About the article

Received: 2017-04-19

Accepted: 2017-06-02

Published Online: 2017-10-07

Published in Print: 2017-11-27


Citation Information: Zeitschrift für Naturforschung B, Volume 72, Issue 11, Pages 765–774, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2017-0055.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in