Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2016: 0.631

SCImago Journal Rank (SJR) 2016: 0.237
Source Normalized Impact per Paper (SNIP) 2016: 0.332

Online
ISSN
1865-7117
See all formats and pricing
More options …
Volume 72, Issue 3 (Mar 2017)

Issues

A new furan carboxamide and two potential precursors from a terrestrial streptomycete

Humaira Naureen
  • Department of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michel Feussi Tala
  • Department of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Khaled A. Shaaban
  • Department of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohamed Shaaban
  • Department of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anja Schüffler / Hartmut Laatsch
  • Corresponding author
  • Department of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany, Phone: + 49-551-3933211, Fax: + 49-551-399660
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-02-23 | DOI: https://doi.org/10.1515/znb-2016-0202

Abstract

Three new bioactive metabolites, 1,6-dihydroxy- 2-methyl-heptan-4-one (1), 4-hydroxy-1-(2-methyl-oxiranyl)- pentan-2-one (2), and 2-(2-hydroxy-propyl)-4-methylfuran- 3-carboxylic acid amide (3) were isolated from the terrestrial Streptomyces sp. isolate ANK245, along with the new microbial constituent p-vinylanisol (4a) and the known metabolites p-vinyl-phenol (4b) and phenethyl alcohol. Analysis of the nonpolar part of the extract by gas chromatography/mass spectrometry (GC-MS) provided further evidence for tetradecanoic acid, 9-octadecenoic acid, hexadecanoic acid, 2-methoxy-4-vinylphenol (4c), 4-hydroxy-3-methoxy-benzaldehyde, o-hydroxybiphenyl, and 1,5,9-trimethyl-4,8,13-cyclotetradecatrien-1,3-diol (5). Structures 1–3 of the new compounds were elucidated by nuclear magnetic resonance (NMR) and NMR spectroscopy, but mass spectrometry (MS) techniques and their absolute configuration were determined by density functional theory (DFT) calculations and Mosher derivatisation. Their antimicrobial and cytotoxic activities were evaluated in comparison with the crude bacterial extract.

This article offers supplementary material which is provided at the end of the article.

Keywords: CD calculations; furan carboxamide; terrestrial Streptomyces sp

References

  • [1]

    H. Laatsch, AntiBase, A Data Base for Rapid Structural Determination of Microbial Natural Products, and annual updates, Wiley-VCH, Weinheim (Germany) 2014; see http://wwwuser.gwdg.de/~ucoc/laatsch/AntiBase.htm.

  • [2]

    Dictionary of Natural Products on CD-ROM, Chapman & Hall Chemical Database, CRC-Press, Taylor and Francis Group, Boca Raton 2016.Google Scholar

  • [3]

    A. S. Anderson, E. M. H. Wellington, Int. J. Syst. Evol. Microbiol. 2001, 51, 797.Google Scholar

  • [4]

    L. D. Boeck, F. P. Mertz, R. K. Wolter, C. E. Higgens, J. Antibiot. 1984, 37, 446.Google Scholar

  • [5]

    A. H. Hunt, G. G. Marconi, T. K. Elzey, M. M. Hoehn, J. Antibiot. 1984, 37, 917.Google Scholar

  • [6]

    S. T. Williams, M. Goodfellow, G. Alderson, E.M. Wllington, P.H. Sneath, M.J. Sacki, J. Gen. Microbiol. 1983, 129, 1747.Google Scholar

  • [7]

    W. Fenical, Chem. Rev. 1993, 93, 1673.Google Scholar

  • [8]

    J. Berdy, in Progress in Microbiology, Vol. 27, (Eds.: M. E. Bushell, U. Gräfe), Elsevier, Amsterdam 1989, p. 3.Google Scholar

  • [9]

    V. Betina, The Chemistry and Biology of Antibiotics, Elsevier, Amsterdam 1983.Google Scholar

  • [10]

    K. Gustafson, M. Roman, W. Fenical, J. Am. Chem. Soc. 1989, 111, 7519.Google Scholar

  • [11]

    The Chemical Abstracts by Scifinder Scholar (https://scifinder.cas.org/scifinder), search from September 2016.

  • [12]

    I. Ohtani, T. Kusumi, Y. Kashman, H. Kakisawa, J. Am. Chem. Soc. 1991, 113, 4092.Google Scholar

  • [13]

    M. Shaaban, M. M. El-Metwally, H. Laatsch, Z. Naturforsch. 2016, 71b, 287.Google Scholar

  • [14]

    Spartan’14, Wavefunction, Irvine, CA (USA) 2014.Google Scholar

  • [15]

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09w (version 7.0), Gaussian, Wallingford, CT (USA) 2009.Google Scholar

  • [16]

    M. Takasugi, S. Ishikawa, T. Masamune, Chem. Lett. 1982, 1221.Google Scholar

  • [17]

    J. Kobayashi, Y. Ohizumi, H. Nakamura, Y. Hirata, Hippospongin, Tetrahedron Lett. 1986, 27, 2113.Google Scholar

  • [18]

    R. S. Jacobs, P. Culver, R. Langdon, T. O’Brien, S. White, Tetrahedron 1985, 41, 981.Google Scholar

  • [19]

    Y. He, H. Zhao, D. Zhao, Kangshengsu 1986, 11, 329.Google Scholar

  • [20]

    H. Naegeli, H. Zaehner, Helv. Chim. Acta 1980, 63, 1400.Google Scholar

  • [21]

    M. G. Nair, B. A. Burke. Phytochemistry 1988, 27, 3169.Google Scholar

  • [22]

    A. Gallois, B. Gross, D. Langlois, H. E. Spinnler, P. Brunerie, Mycol. Res. 1990, 94, 494.Google Scholar

  • [23]

    W. Ayer, D. J. Muir, P. Chakravarty, Phytochemistry 1996, 42, 1321.Google Scholar

  • [24]

    A. Zeeck, I. Sattler, C. Boddien in DECHEMA Monogr, Vol. 129 (Eds.: T. Anke, U. Onken), VCH, Weinheim, 1993, chapter 2.4, p. 85.Google Scholar

  • [25]

    X. Rong, Y. Huang, Int. J. Syst. Evol. Microbiol. 2010, 60, 696.Google Scholar

  • [26]

    P. R. Burkholder, L. M. Burkholder, L. R. Almodovar, Puerto Rico Bot. Mar. 1960, 2, 149.Google Scholar

  • [27]

    A. Takahashi, S. Kurasawa, D. Ikeda, Y. Okami, T. Takeuchi, J. Antibiot. 1989, 32, 1556.Google Scholar

  • [28]

    I. Sajid, C. B. Fotso Fondja Yao, K. A. Shaaban, S. Hasnain, H. Laatsch, World J. Microbiol. Biotechnol. 2009, 25, 601.Google Scholar

About the article

Received: 2016-09-09

Accepted: 2016-10-27

Published Online: 2017-02-23

Published in Print: 2017-03-01


Citation Information: Zeitschrift für Naturforschung B, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2016-0202.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in