Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences


IMPACT FACTOR 2018: 0.961

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.263
Source Normalized Impact per Paper (SNIP) 2018: 0.505

Online
ISSN
1865-7117
See all formats and pricing
More options …
Volume 73, Issue 11

Issues

The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)

Simon Engelbert
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dirk Niepmann
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Theresa Block
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lukas Heletta
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rainer Pöttgen
  • Corresponding author
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-04 | DOI: https://doi.org/10.1515/znb-2018-0115

Abstract

The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm) were synthesized from the elements by arc melting or by induction melting in sealed niobium containers. They crystallize with the NdRh2Sn4 type structure, space group Pnma. The samples were characterized by powder X-ray diffraction (Guinier technique). Three structures were refined from single-crystal X-ray data: a=1844.5(2), b=450.33(4), c=716.90(6) pm, wR2=0.0323, 1172 F2 values, 44 variables for LaIr2Sn4, a=1840.08(2), b=448.24(4), c=719.6(1) pm, wR2=0.0215, 1265 F2 values, 45 variables for Ce1.13Ir2Sn3.87, and a=1880.7(1), b=446.2(1), c=733.0(1) pm, wR2=0.0845, 836 F2 values, 45 variables for Ce1.68Ir2Sn3.32. The structures consist of three-dimensional [Ir2Sn4] polyanionic networks in which the rare earth atoms fill pentagonal prismatic channels. The striking structural motif concerns the formation of solid solutions RE1+xIr2Sn4−x on the Sn4 sites, which have similar coordination as the RE sites. Temperature dependent magnetic susceptibility measurements revealed diamagnetic behavior for LaIr2Sn4. CeIr2Sn4, PrIr2Sn4 and NdIr2Sn4 show Curie-Weiss paramagnetism while SmIr2Sn4 exhibits typical van Vleck paramagnetism. Antiferromagnetic ground states were observed for CeIr2Sn4 (TN=3.3 K) and SmIr2Sn4 (TN=3.8 K). 119Sn Mössbauer spectra show a close superposition of four sub-spectra which can be distinguished through their isomer shift and the quadrupole splitting parameter.

Keywords: 119Sn Mössbauer spectroscopy; crystal structure; magnetic properties; stannides

Dedicated to:

Professor Werner Uhl on the occasion of his 65th birthday.

References

  • [1]

    R. V. Skolozdra, Stannides of the rare-earth and transition metals, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 24 (Eds.: K. A. Gschneidner, Jr., L. Eyring), Elsevier, Amsterdam, 1997, chapter 164.Google Scholar

  • [2]

    R. Pöttgen, Z. Naturforsch. 2006, 61b, 677.Google Scholar

  • [3]

    P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2017/18), ASM International®, Materials Park, Ohio (USA) 2017.Google Scholar

  • [4]

    A. Szytuła, J. Leciejewicz, Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics, CRC Press, Boca Raton, Florida, 1994.Google Scholar

  • [5]

    R. Pöttgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289.Google Scholar

  • [6]

    R. Pöttgen, O. Janka, B. Chevalier, Z. Naturforsch. 2016, 71b, 165.Google Scholar

  • [7]

    O. Janka, O. Niehaus, R. Pöttgen, B. Chevalier, Z. Naturforsch. 2016, 71b, 737.Google Scholar

  • [8]

    O. Niehaus, G. Heymann, H. Huppertz, U. Ch. Rodewald, B. Chevalier, S. F. Matar, R.-D. Hoffmann, R. Pöttgen, Dalton Trans. 2016, 45, 14216.CrossrefGoogle Scholar

  • [9]

    D. Laffargue, F. Bourée, B. Chevalier, J. Etourneau, T. Roisnel, Physica B 1999, 259–261, 46.Google Scholar

  • [10]

    R. Pöttgen, R.-D. Hoffmann, E. V. Sampathkumaran, I. Das, B. D. Mosel, R. Müllmann, J. Solid State Chem. 1997, 134, 326.CrossrefGoogle Scholar

  • [11]

    M. Sundermann, F. Strigari, T. Willers, H. Winkler, A. Prokofiev, J. M. Ablett, J.-P. Rueff, D. Schmitz, E. Weschke, M. Moretti Sala, A. Al-Zein, A. Tanaka, M. W. Haverkort, D. Kasinathan, L. H. Tjeng, S. Paschen, A. Severing, Sci. Rep. 2015, 5, 17937.Google Scholar

  • [12]

    E. L. Thomas, H.-O. Lee, A. N. Bankston, S. MaQuilon, P. Klavins, M. Moldovan, D. P. Young, Z. Fisk, J. Y. Chan, J. Solid State Chem. 2006, 179, 1642.CrossrefGoogle Scholar

  • [13]

    A. Ślebarski, J. Goraus, Phys. Rev. B 2013, 88, 155122.CrossrefGoogle Scholar

  • [14]

    C. N. Kuo, W. T. Chen, C. W. Tseng, C. J. Hsu, R. Y. Huang, F. C. Chou, Y. K. Kuo, C. S. Lue, Phys. Rev. B 2018, 97, 094101.CrossrefGoogle Scholar

  • [15]

    P. Salamakha, O. Sologub, J. K. Yakinthos, Ch. D. Routsi, J. Alloys Compd. 1998, 265, L1.CrossrefGoogle Scholar

  • [16]

    B. Chevalier, C. P. Sebastian, R. Pöttgen, Solid State Sci. 2006, 8, 1000.CrossrefGoogle Scholar

  • [17]

    M. Selsane, M. Lebail, N. Hamdaoui, J. P. Kappler, H. Noël, J. C. Achard, C. Godart, Physica B 1990, 163, 213.CrossrefGoogle Scholar

  • [18]

    W. P. Beyermann, M. F. Hundley, P. C. Canfield, J. D. Thompson, M. Latroche, C. Godart, M. Selsane, Z. Fisk, J. L. Smith, Phys. Rev. B 1991, 43, 13130.CrossrefGoogle Scholar

  • [19]

    G. Venturini, B. Malaman, B. Roques, Mater. Res. Bull. 1989, 24, 1135.CrossrefGoogle Scholar

  • [20]

    N. G. Patil, S. Ramakrishnan, Phys. Rev. B 1997, 56, 3360.CrossrefGoogle Scholar

  • [21]

    S. Ramakrishnan, Curr. Sci. 2005, 88, 96.Google Scholar

  • [22]

    A. S. Cooper, Mater. Res. Bull. 1980, 15, 799.CrossrefGoogle Scholar

  • [23]

    D. Niepmann, R. Pöttgen, K. M. Poduska, F. J. DiSalvo, H. Trill, B. D. Mosel, Z. Naturforsch. 2001, 56b, 1.Google Scholar

  • [24]

    C. Nagoshi, H. Sugawara, Y. Aoki, S. Sakai, M. Kohgi, H. Sato, T. Onimaru, T. Sakakibara, Physica B 2005, 359–361, 248.Google Scholar

  • [25]

    C. P. Yang, Y. H. Chen, H. Wang, C. Nagoshi, M. Kohgi, H. Sato, Appl. Phys. Lett. 2008, 92, 092504.CrossrefGoogle Scholar

  • [26]

    J. R. Collave, H. A. Borges, S. M. Ramos, E. N. Hering, M. B. Fontes, E. Baggio-Saitovitch, A. Eichler, E. M. Bittar, P. G. Pagliuso, Solid State Commun. 2014, 177, 132.CrossrefGoogle Scholar

  • [27]

    D. Niepmann, R. Pöttgen, B. Künnen, G. Kotzyba, C. Rosenhahn, B. D. Mosel, Chem. Mater. 1999, 11, 1597.CrossrefGoogle Scholar

  • [28]

    D. Niepmann, Struktur-Eigenschaftsbeziehungen ternärer intermetallischer Cer-Übergangsmetall-Silicide, Germanide und Stannide, Dissertation, Universität Münster, Münster, 2000.Google Scholar

  • [29]

    M. Méot-Meyer, G. Venturini, B. Malaman, B. Roques, Mater. Res. Bull. 1985, 20, 913.CrossrefGoogle Scholar

  • [30]

    R. Pöttgen, T. Gulden, A. Simon, GIT Labor-Fachzeitschrift 1999, 43, 133.Google Scholar

  • [31]

    D. Kußmann, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 1998, 624, 1727.CrossrefGoogle Scholar

  • [32]

    K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73.CrossrefGoogle Scholar

  • [33]

    R. A. Brand, Normos, Mössbauer Fitting Program, University of Duisburg, Duisburg (Germany) 2002.Google Scholar

  • [34]

    G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467.Google Scholar

  • [35]

    G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.Google Scholar

  • [36]

    M. Gamża, W. Schnelle, R. Gumeniuk, Yu. Prots, A. Ślebarski, H. Rosner, Yu. Grin, J. Phys.: Condens. Matter 2009, 21, 325601.Google Scholar

  • [37]

    V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.Google Scholar

  • [38]

    V. Smetana, G. J. Miller, J. D. Corbett, Inorg. Chem. 2013, 52, 12502.CrossrefGoogle Scholar

  • [39]

    S. N. Nesterenko, A. I. Tursina, A. V. Gribanov, Y. D. Seropegin, J. M. Kurenbaeva, J. Alloys Compd. 2004, 383, 242.CrossrefGoogle Scholar

  • [40]

    J. R. Salvador, K. Hoang, S. D. Mahanti, M. G. Kanatzidis, Inorg. Chem. 2007, 46, 6933.CrossrefGoogle Scholar

  • [41]

    S. Sarkar, M. J. Gutmann, S. C. Peter, Cryst. Growth Des. 2013, 13, 4285.CrossrefGoogle Scholar

  • [42]

    D. Voßwinkel, S. F. Matar, R. Pöttgen, Monatsh. Chem. 2015, 146, 1375.CrossrefGoogle Scholar

  • [43]

    R. Pöttgen, D. Johrendt, Intermetallics, De Gruyter, Berlin, 2014.Google Scholar

  • [44]

    J. Emsley, The Elements, Oxford University Press, Oxford, 1999.Google Scholar

  • [45]

    R.-D. Hoffmann, D. Kußmann, U. Ch. Rodewald, R. Pöttgen, C. Rosenhahn, B. D. Mosel, Z. Naturforsch. 1999, 54b, 709.Google Scholar

  • [46]

    Zh. Wu, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 2002, 628, 1484.CrossrefGoogle Scholar

  • [47]

    J. Donohue, The Structures of the Elements, Wiley, New York, 1974.Google Scholar

  • [48]

    I. Todorov, S. C. Sevov, Inorg. Chem. 2005, 44, 5361.CrossrefGoogle Scholar

  • [49]

    H. Lueken, Magnetochemie, Teubner, Stuttgart, 1999.Google Scholar

  • [50]

    R. Pöttgen, H. Borrmann, R. K. Kremer, J. Magn. Magn. Mater. 1996, 152, 196.CrossrefGoogle Scholar

  • [51]

    J. H. van Vleck, Theory of Electric and Magnetic Susceptibilities, Clarendon Press, Oxford, 1932.Google Scholar

  • [52]

    A. M. Stewart, Phys. Rev. B 1972, 6, 1985.CrossrefGoogle Scholar

  • [53]

    H. C. Hamaker, L. D. Woolf, H. B. MacKay, Z. Fisk, M. B. Maple, Solid State Commun. 1979, 32, 289.CrossrefGoogle Scholar

  • [54]

    A. M. Stewart, Phys. Rev. B 1993, 47, 11242.CrossrefGoogle Scholar

  • [55]

    S. Seidel, O. Niehaus, S. F. Matar, O. Janka, B. Gerke, U. C. Rodewald, R. Pöttgen, Z. Naturforsch. 2014, 69b, 1105.Google Scholar

  • [56]

    B. Heying, J. Kösters, R.-D. Hoffmann, L. Heletta, R. Pöttgen, Z. Naturforsch. 2017, 72b, 753.Google Scholar

  • [57]

    P. E. Lippens, Phys. Rev. B 1999, 60, 4576.Google Scholar

About the article

Received: 2018-06-05

Accepted: 2018-06-23

Published Online: 2018-07-04

Published in Print: 2018-11-27


Citation Information: Zeitschrift für Naturforschung B, Volume 73, Issue 11, Pages 875–884, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0115.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Myroslava Horiacha, Vasyl‘ I. Zaremba, Frank Stegemann, and Rainer Pöttgen
Monatshefte für Chemie - Chemical Monthly, 2019, Volume 150, Number 8, Page 1409

Comments (0)

Please log in or register to comment.
Log in