Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences


IMPACT FACTOR 2018: 0.961

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.263
Source Normalized Impact per Paper (SNIP) 2018: 0.505

Online
ISSN
1865-7117
See all formats and pricing
More options …
Volume 73, Issue 11

Issues

Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet

Hagen Poddig
  • Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Bergstraße 66, Dresden 01069, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jens Hunger
  • Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Bergstraße 66, Dresden 01069, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sirko Kamusella
  • Technische Universität Dresden, Faculty of Physics, Zellescher Weg 16, Dresden 01069, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hans-Henning Klauss
  • Technische Universität Dresden, Faculty of Physics, Zellescher Weg 16, Dresden 01069, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Doert
  • Corresponding author
  • Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Bergstraße 66, Dresden 01069, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-22 | DOI: https://doi.org/10.1515/znb-2018-0120

Abstract

A new calcium iron ruthenium hydrogarnet with the approximate composition Ca3(Ru2−xFex)(FeO4)2−y(H4O4)1+y (x=1, y≈0.35) has been obtained by hydrothermal synthesis under oxidizing alkaline conditions. The compound crystallizes in the cubic space group Iad (No. 230) with a lattice parameter of a=12.4804(4) Å (T=100 K) and Z=8. The octahedral site of the garnet structure is equally occupied by Ru and Fe, whereas the tetrahedral site is partially occupied by Fe only. A partial substitution of the oxide anions by hydroxide ions is necessary for charge balancing, corresponding to the so-called hydrogarnet defects. The presence of hydroxide groups is proven by infrared spectroscopy. 57Fe Mössbauer spectroscopic data provide evidence for two different Fe3+ coordination environments as well as a magnetic ordering of two iron substructures with the respective ordering temperature above room temperature. The crystal composition was verified by energy-dispersive X-ray spectroscopy and the thermal behavior of the calcium iron ruthenate was studied by difference thermal analysis.

This article offers supplementary material which is provided at the end of the article.

Keywords: crystal structure; hydrogarnet; hydrothermal synthesis; iron; Mössbauer spectroscopy; ruthenium

Dedicated to: Professor Bernt Krebs on the occasion of his 80th birthday.

References

  • [1]

    W. Witczak-Krempa, G. Chen, Y. B. Kim, L. Balents, Annu. Rev. Condens. Matter Phys. 2014, 5, 57.CrossrefGoogle Scholar

  • [2]

    K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z. Q. Mao, Y. Mori, Y. Maeno, Nature 1998, 396, 658.CrossrefGoogle Scholar

  • [3]

    R. J. Bouchard, J. L. Gillson, Mater. Res. Bull. 1972, 7, 873.CrossrefGoogle Scholar

  • [4]

    P. D. Battle, S. K. Bollen, A. V. Powell, J. Solid State Chem. 1992, 99, 267.CrossrefGoogle Scholar

  • [5]

    P. Khalifah, K. D. Nelson, R. Jin, Z. Q. Mao, Y. Liu, Q. Huang, X. P. A. Gao, A. P. Ramirez, R. J. Cava, Nature 2001, 411, 669.CrossrefGoogle Scholar

  • [6]

    J. T. Rijssenbeek, Q. Huang, R. W. Erwin, H. W. Zandbergen, R. J. Cava, J. Solid State Chem. 1999, 146, 65.CrossrefGoogle Scholar

  • [7]

    B. S. Niewa, L. Shlyk, S. Kryukov, L. L. E. De, R. Niewa, Z. Naturforsch. 2007, 62b, 753.Google Scholar

  • [8]

    R. Niewa, L. Shlyk, B. Schüpp-Niewa, L. E. De Long, Z. Anorg. Allg. Chem. 2010, 636, 331.CrossrefGoogle Scholar

  • [9]

    A. Rabenau, Angew. Chem. Int. Ed. Engl. 1985, 24, 1026.CrossrefGoogle Scholar

  • [10]

    R. I. Walton, Chem. Soc. Rev. 2002, 31, 230.CrossrefGoogle Scholar

  • [11]

    C. I. Hiley, M. R. Lees, J. M. Fisher, D. Thompsett, S. Agrestini, R. I. Smith, R. I. Walton, Angew. Chem. Int. Ed. 2014, 53, 4423.CrossrefGoogle Scholar

  • [12]

    K. Sardar, E. Petrucco, C. I. Hiley, J. D. B. Sharman, P. P. Wells, A. E. Russell, R. J. Kashtiban, J. Sloan, R. I. Walton, Angew. Chem. Int. Ed. 2014, 53, 10960.CrossrefGoogle Scholar

  • [13]

    B. E. Prasad, P. Kazin, A. C. Komarek, C. Felser, M. Jansen, Angew. Chem. Int. Ed. 2016, 55, 4467.CrossrefGoogle Scholar

  • [14]

    K. Sardar, J. Fisher, D. Thompsett, M. R. Lees, G. J. Clarkson, J. Sloan, R. J. Kashtiban, R. I. Walton, Chem. Sci. 2011, 2, 1573.CrossrefGoogle Scholar

  • [15]

    C. I. Hiley, M. R. Lees, D. L. Hammond, R. J. Kashtiban, J. Sloan, R. I. Smith, R. I. Walton, Chem. Commun. 2016, 52, 6375.CrossrefGoogle Scholar

  • [16]

    Apex2, Bruker AXS Inc., Madison, Wisconsin (USA) 2014.Google Scholar

  • [17]

    Saint+, Area-Detector Integration Software, Bruker AXS Inc., Madison, Wisconsin (USA) 2013.Google Scholar

  • [18]

    G. M. Sheldrick, Acta Crystallogr. A 2015, 71, 3.CrossrefGoogle Scholar

  • [19]

    G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.CrossrefGoogle Scholar

  • [20]

    G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3.CrossrefGoogle Scholar

  • [21]

    A. Coelho, Topas Academic V5, Brisbane (Australia) 2012.Google Scholar

  • [22]

    E. S. Grew, A. J. Locock, S. J. Mills, I. O. Galuskina, E. V. Galuskin, U. Halenius, Am. Mineral. 2013, 98, 785.CrossrefGoogle Scholar

  • [23]

    A. F. Wells, Structural Inorganic Chemistry, Oxford University Press, London, 1975.Google Scholar

  • [24]

    I. D. Brown, D. Altermatt, Acta Crystallogr. B 1985, 41, 244.Google Scholar

  • [25]

    O. C. Gagné, F. C. Hawthorne, Acta Crystallogr. B 2015, 71, 562.CrossrefGoogle Scholar

  • [26]

    M. Nespolo, G. Ferraris, G. Ivaldi, R. Hoppe, Acta Crystallogr. B 2001, 57, 652.CrossrefGoogle Scholar

  • [27]

    M. Nespolo, B. Guillot, J. Appl. Cryst. 2015, 49, 317.Google Scholar

  • [28]

    H. Müller-Buschbaum, Z. Anorg. Allg. Chem. 2006, 632, 1625.CrossrefGoogle Scholar

  • [29]

    J. Darriet, A. Vidal, Bull. Soc. Fr. Mineral. Cristallogr. 1975, 98, 374.Google Scholar

  • [30]

    C. A. Geiger, G. R. Rossman, Am. Mineral. 2018, 103, 384.CrossrefGoogle Scholar

  • [31]

    L. P. M. De, Y. Noël, S. Mustapha, A. Meyer, P. D’Arco, R. Dovesi, Am. Mineral. 2015, 98, 966.Google Scholar

  • [32]

    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds. B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry, John Wiley & Sons, Inc., Hoboken, NJ, 2009.Google Scholar

  • [33]

    A. M. Hofmeister, K. R. Campbell, J. Appl. Phys. 1992, 72, 638.CrossrefGoogle Scholar

  • [34]

    E. Zepeda-Alarcon, H. Nakotte, A. F. Gualtieri, G. King, K. Page, S. C. Vogel, H.-W. Wang, H.-R. Wenk, J. Appl. Crystallogr. 2014, 47, 1983.CrossrefGoogle Scholar

  • [35]

    D. Fischer, R. Hoppe, Z. Anorg. Allg. Chem. 1991, 601, 41.CrossrefGoogle Scholar

  • [36]

    G. Li, S. Feng, L. Li, X. Li, W. Jin, Chem. Mater. 1997, 9, 2894.CrossrefGoogle Scholar

  • [37]

    V. Lacivita, A. Mahmoud, A. Erba, P. D’Arco, S. Mustapha, Am. Mineral. 2015, 100, 2637.CrossrefGoogle Scholar

  • [38]

    D. V. M. Paiva, M. A. S. Silva, T. S. Ribeiro, I. F. Vasconcelos, A. S. B. Sombra, J. C. Góes, P. B. A. Fechine, J. Alloys Compd. 2015, 644, 763.CrossrefGoogle Scholar

  • [39]

    H. Serier-Brault, L. Thibault, M. Legrain, P. Deniard, X. Rocquefelte, P. Leone, J.-L. Perillon, S. Le Bris, J. Waku, S. Jobic, Inorg. Chem. 2014, 53, 12378.CrossrefGoogle Scholar

  • [40]

    X. Guo, A. H. Tavakoli, S. Sutton, R. K. Kukkadapu, L. Qi, A. Lanzirotti, M. Newville, M. Asta, A. Navrotsk, Chem. Mater. 2014, 26, 1133.CrossrefGoogle Scholar

  • [41]

    Z. Radek, M. Mashlan, D. Petridis, Chem. Mater. 2002, 14, 969.CrossrefGoogle Scholar

  • [42]

    M. Sorescu, R. A. Brand, D. Mihaila-Tarabasanu, L. Diamandescu, J. Appl. Phys. 1999, 85, 5546.CrossrefGoogle Scholar

About the article

Received: 2018-06-11

Accepted: 2018-08-29

Published Online: 2018-09-22

Published in Print: 2018-11-27


Citation Information: Zeitschrift für Naturforschung B, Volume 73, Issue 11, Pages 803–811, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0120.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hagen Poddig, Jens Hunger, Sirko Kamusella, Hans-Henning Klauss, Anja U. B. Wolter, Gaël Bastien, Laura T. Corredor Bohórquez, and Thomas Doert
Zeitschrift für anorganische und allgemeine Chemie, 2019, Volume 645, Number 8, Page 631
[2]
Ralf Albrecht, Jens Hunger, Thomas Doert, and Michael Ruck
European Journal of Inorganic Chemistry, 2019, Volume 2019, Number 10, Page 1398

Comments (0)

Please log in or register to comment.
Log in