Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

IMPACT FACTOR 2018: 0.961

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.263
Source Normalized Impact per Paper (SNIP) 2018: 0.505

See all formats and pricing
More options …
Volume 73, Issue 11


A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum

Katrin Krupinski
  • TU Bergakademie Freiberg, Department of Chemistry and Physics, Institute of Inorganic Chemistry, Leipziger Str. 29, 09599 Freiberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Erica Brendler
  • TU Bergakademie Freiberg, Department of Chemistry and Physics, Institute of Analytical Chemistry, Leipziger Str. 29, 09599 Freiberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert Gericke
  • TU Bergakademie Freiberg, Department of Chemistry and Physics, Institute of Inorganic Chemistry, Leipziger Str. 29, 09599 Freiberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jörg Wagler
  • TU Bergakademie Freiberg, Department of Chemistry and Physics, Institute of Inorganic Chemistry, Leipziger Str. 29, 09599 Freiberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edwin KrokeORCID iD: http://orcid.org/0000-0002-7934-6439
Published Online: 2018-09-29 | DOI: https://doi.org/10.1515/znb-2018-0137


Bis(trimethylsilyl)carbodiimide (BTSC), so-called “pseudo water” because of some analogies such as similar (group)electronegativities of Me3Si– vs. H– and –N=C=N– vs. –O–, may form two different kinds of “pseudo hydrates” of metals (M), i.e. M–N(SiMe3)=C=N(SiMe3) and M–N≡C–N(SiMe3)2, derived from its carbodiimide and cyanamide isomeric forms, respectively. With anhydrous AlCl3 in Me3SiCl solution BTSC was shown to be capable of forming both kinds of solvates, i.e. Cl3Al–N(SiMe3)–C≡N(SiMe3) (1) and ((Cl3Al)(Me3Si)NCN)3–Al–(N≡C–N(SiMe3)2)3 (2). Both compounds were isolated as crystalline solids, which undergo condensation reactions upon storage. By single-crystal X-ray diffraction analysis the constitution of 1 was confirmed unambiguously, and quantum chemical calculations (B3LYP/6-311++g(d,p)) confirmed that compound 1 is 6 kcal mol−1 more stable than its hypothetical N,N-bis(trimethylsilyl)cyanamide isomer Cl3Al–N≡C–N(SiMe3)2. Compound 1 represents the first crystallographically confirmed disilylcarbodiimide complex of a metal salt. The molecules of compound 2 are heavily disordered in the solid state (positional disorder of N≡C–N(SiMe3)2 vs. N≡C–N(SiMe3)(AlCl3) and positional disorder of SiMe3 vs. AlCl3 groups in the latter). Therefore, the identity of 2 was additionally confirmed by 13C, 15N, 27Al and 29Si CP/MAS NMR spectroscopy.

This article offers supplementary material which is provided at the end of the article.

Keywords: aluminum chloride coordination; carbodiimide; cyanamide; isomerism; solid-state NMR; X-ray diffraction

Dedicated to: Professor Werner Uhl on the occasion of his 65th birthday.


  • [1]

    A. Obermayer, A. Kienzle, J. Weidlein, R. Riedel, A. Simon, Z. Anorg. Allg. Chem. 1994, 620, 1357.CrossrefGoogle Scholar

  • [2]

    A. O. Gabriel, R. Riedel, Angew. Chem., Int. Ed. Engl. 1997, 36, 384.CrossrefGoogle Scholar

  • [3]

    D. S. Kim, E. Kroke, R. Riedel, A. O. Gabriel, S. C. Shim, Appl. Organomet. Chem. 1999, 13, 495.CrossrefGoogle Scholar

  • [4]

    C. Balan, K. W. Voelger, E. Kroke, R. Riedel, Macromolecules 2000, 33, 3404.CrossrefGoogle Scholar

  • [5]

    E. Kroke, K. W. Voelger, A. Klonczynski, R. Riedel, Angew. Chem. Int. Ed. 2001, 40, 1698.CrossrefGoogle Scholar

  • [6]

    K. W. Voelger, E. Kroke, C. Gervais, T. Saito, F. Babonneau, R. Riedel, Y. Iwamoto, T. Hirayama, Chem. Mater. 2003, 15, 755.CrossrefGoogle Scholar

  • [7]

    S. Nahar-Borchert, E. Kroke, R. Riedel, B. Boury, R. J. P. Corriu, J. Organomet. Chem. 2003, 686, 127.CrossrefGoogle Scholar

  • [8]

    K. W. Voelger, R. Hauser, E. Kroke, R. Riedel, Y. H. Ikuhara, Y. Iwamoto, J. Ceram. Soc. Japn. 2006, 114, 567.CrossrefGoogle Scholar

  • [9]

    Y. Shimokawa, A. Fujiwara, E. Ionescu, G. Mera, S. Honda, Y. Iwamoto, R. Riedel, J. Ceram. Soc. Japn. 2014, 122, 895.CrossrefGoogle Scholar

  • [10]

    H.-D. Schaedler, L. Jäger, I. Senf, Z. Anorg. Allg. Chem. 1994, 619, 1115.Google Scholar

  • [11]

    D. R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 79th ed., CRC Press, Boca Raton 1999, pp. 9–74.Google Scholar

  • [12]

    Y. Vignollet, J. C. Maire, J. Organomet. Chem. 1969, 17, 43.CrossrefGoogle Scholar

  • [13]

    K. Lippe, J. Wagler, E. Kroke, S. Herkenhoff, V. Ischenko, J. Woltersdorf, Chem. Mater. 2009, 21, 3941.CrossrefGoogle Scholar

  • [14]

    H.-J. Cheng, K. Lippe, E. Kroke, J. Wagler, G. W. Fester, Y.-L. Li, M. R. Schwarz, T. Saplinova, S. Herkenhoff, V. Ischenko, J. Woltersdorf, Appl. Organometal. Chem. 2011, 25, 735.CrossrefGoogle Scholar

  • [15]

    G. Rajca, W. Schwarz, J. Weidlein, Z. Naturforsch. 1984, 39b, 1219.Google Scholar

  • [16]

    A. Jana, H. W. Roesky, C. Schulzke, P. P. Samuel, Inorg. Chem. 2010, 49, 3461.CrossrefGoogle Scholar

  • [17]

    M. F. Ibad, P. Langer, F. Reiß, A. Schulz, A. Villinger, J. Am. Chem. Soc. 2012, 134, 17757.CrossrefGoogle Scholar

  • [18]

    M. H. Holthausen, M. Colussi, D. W. Stephan, Chem. Eur. J. 2015, 21, 2193.CrossrefGoogle Scholar

  • [19]

    A. S. Gordetsov, V. P. Kozyukov, I. A. Vostokov, S. V. Sheludyakova, Y. I. Dergunov, V. F. Mironov, Russ. Chem. Rev. 1982, 51, 485.CrossrefGoogle Scholar

  • [20]

    H.-D. Hausen, W. Schwarz, G. Rajca, J. Weidlein, Z. Naturforsch. 1986, 41b, 1223.Google Scholar

  • [21]

    S. Schulz, M. Münch, U. Flörke, Z. Anorg. Allg. Chem. 2008, 634, 2221.CrossrefGoogle Scholar

  • [22]

    A. Dimitrov, D. Heidemann, E. Kemnitz, Inorg. Chem. 2006, 45, 10807.CrossrefGoogle Scholar

  • [23]

    M. Hog, M. Schneider, G. Studer, M. Bäuerle, S. A. Föhrenbacher, H. Scherer, I. Krossing, Chem. Eur. J. 2017, 23, 11054.CrossrefGoogle Scholar

  • [24]

    H. Ott, C. Matthes, S. Schmatz, U. Klingebiel, D. Stalke, Z. Naturforsch. 2008, 63b, 1023.Google Scholar

  • [25]

    E. Babian-Kibala, H. Chen, F. A. Cotton, L. M. Daniels, L. R. Falvello, G. Schmid, Z. Yao, Inorg. Chim. Acta 1996, 250, 359.CrossrefGoogle Scholar

  • [26]

    I. A. Vostokov, Y. I. Dergunov, A. S. Gordetsov, Zh. Obshch. Khim. 1977, 47, 1769.Google Scholar

  • [27]

    G. M. Sheldrick, Shelxs-97, Program for the Solution of Crystal Structures, University of Gottingen, Gottingen (Germany) 1997.Google Scholar

  • [28]

    G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467.Google Scholar

  • [29]

    G. M. Sheldrick, Shelxl-2014, Program for the Refinement of Crystal Structures, University of Gottingen, Gottingen (Germany) 2014.Google Scholar

  • [30]

    G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.Google Scholar

  • [31]

    G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.Google Scholar

  • [32]

    C. K. Johnson, M. N. Burnett, Ortep-III (version1.0.2), Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Rep. ORNL-6895, Oak Ridge National Laboratory, Oak Ridge, TN (USA) 1996. Windows version: L. J. Farrugia, University of Glasgow, Glasgow, Scotland (U. K.) 1999.Google Scholar

  • [33]

    L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.Google Scholar

  • [34]

    POV-Ray (version 3.6.2). Trademark of Persistence of Vision Raytracer Pty. Ltd.: Williamstown, Victoria, Australia Copyright Hallam Oaks Pty. Ltd., 1994–2004. Available online: http://www.povray.org/download/ (accessed on September 1, 2018).

  • [35]

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 (revision E.01), Gaussian, Inc., Wallingford CT (USA) 2009.Google Scholar

About the article

Received: 2018-06-30

Accepted: 2018-09-01

Published Online: 2018-09-29

Published in Print: 2018-11-27

Citation Information: Zeitschrift für Naturforschung B, Volume 73, Issue 11, Pages 911–918, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0137.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in