Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences


IMPACT FACTOR 2018: 0.961

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.263
Source Normalized Impact per Paper (SNIP) 2018: 0.505

Online
ISSN
1865-7117
See all formats and pricing
More options …
Volume 73, Issue 11

Issues

Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents

Clint E. Price
  • Department of Chemical and Biomedical Science and Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ana B. Dantas
  • Department of Chemical and Biomedical Science and Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Douglas R. Powell
  • Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5251, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rudolf J. Wehmschulte
  • Corresponding author
  • Department of Chemical and Biomedical Science and Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-24 | DOI: https://doi.org/10.1515/znb-2018-0176

Abstract

The bulky phenols 2,6-Ad2C6H3OH (Ad=adamantyl), A, (2,6-Ph2CH)2-4-Me-C6H2OH, B, and (2,6-Tol2CH)2-4-iPr-C6H2OH, C, react with one equivalent of Et3M (M=Al, Ga), Bu2Mg and Et2Zn to afford well-defined mono-phenolate complexes (ArOMRn)m. The aluminum and gallium phenolates derived from the very bulky phenol A are likely monomeric in the solid state. The other compounds are dimeric with bridging phenolates. Crystal structures of compounds with phenols B and C display the dimeric M2O2 cores of the phenolates and illustrate some deviations for the magnesium and zinc compounds. The former possesses stabilizing Mg···C contacts with one of the flanking arene groups of the phenolate substituent, and the latter may be viewed as an intermediate between a symmetric dimer and two monomers. All compounds were characterized by 1H and 13C NMR spectroscopy, and their solution spectra are in agreement with the crystal structure data.

This article offers supplementary material which is provided at the end of the article.

Keywords: metal alkyl; metal···π contacts; phenolate; X-ray crystal structure

Dedicated to: Professor Werner Uhl on the occasion of his 65th birthday.

References

  • [1]

    D. C. Bradley, R. C. Mehrotra, I. P. Rothwell, A. Singh, Alkoxo and Aryloxo Derivatives of Metals, Academic Press, San Diego, 2001, p. 704.Google Scholar

  • [2]

    P. J. Brothers, P. P. Power, Adv. Organomet. Chem. 1996, 39, 1.CrossrefGoogle Scholar

  • [3]

    S. Saito, H. Yamamoto, Chem. Commun. 1997, 1585.Google Scholar

  • [4]

    H. Yamamoto, Lewis Acids in Organic Synthesis, Wiley-VCH, Weinheim, 2000.Google Scholar

  • [5]

    H. Yamamoto, K. Oshima, Main Group Metals in Organic Synthesis, Wiley-VCH, Weinheim, 2004.Google Scholar

  • [6]

    D. A. Dickie, I. S. MacIntosh, D. D. Ino, Q. He, O. A. Labeodan, M. C. Jennings, G. Schatte, C. J. Walsby, J. A. C. Clyburne, Can. J. Chem. 2008, 86, 20.CrossrefGoogle Scholar

  • [7]

    C. Stanciu, M. M. Olmstead, A. D. Phillips, M. Stender, P. P. Power, Eur. J. Inorg. Chem. 2003, 3495.Google Scholar

  • [8]

    T. Watanabe, Y. Ishida, T. Matsuo, H. Kawaguchi, Dalton Trans. 2010, 39, 484.CrossrefGoogle Scholar

  • [9]

    S. M. Franke, B. L. Tran, F. W. Heinemann, W. Hieringer, D. J. Mindiola, K. Meyer, Inorg. Chem. 2013, 52, 10552.CrossrefGoogle Scholar

  • [10]

    R. J. Wehmschulte, J. M. Steele, J. D. Young, M. A. Khan, J. Am. Chem. Soc. 2003, 125, 1470.CrossrefGoogle Scholar

  • [11]

    J. D. Young, M. A. Khan, R. J. Wehmschulte, Organometallics 2004, 23, 1965.CrossrefGoogle Scholar

  • [12]

    J. D. Young, M. A. Khan, D. R. Powell, R. J. Wehmschulte, Eur. J. Inorg. Chem. 2007, 1671.Google Scholar

  • [13]

    T. Klis, D. R. Powell, L. Wojtas, R. J. Wehmschulte, Organometallics 2011, 30, 2563.CrossrefGoogle Scholar

  • [14]

    M. Saleh, D. R. Powell, R. J. Wehmschulte, Organometallics 2017, 36, 4810.CrossrefGoogle Scholar

  • [15]

    R. J. Wehmschulte, M. Saleh, D. R. Powell, Organometallics 2013, 32, 6812.CrossrefGoogle Scholar

  • [16]

    M. T. Muñoz, M. Palenzuela, T. Cuenca, M. E. G. Mosquera, ChemCatChem. 2018, 10, 936.CrossrefGoogle Scholar

  • [17]

    I. E. Nifant’ev, M. E. Minyaev, A. V. Shlyakhtin, P. V. Ivchenko, A. V. Churakov, Mendeleev Commun. 2017, 27, 341.CrossrefGoogle Scholar

  • [18]

    L. Wang, L. Yang, Acta Crystallogr. 2014, E70, m352.Google Scholar

  • [19]

    M. A. Petrie, M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 1991, 113, 8704.CrossrefGoogle Scholar

  • [20]

    W. M. Cleaver, A. R. Barron, Organometallics 1993, 12, 1001.CrossrefGoogle Scholar

  • [21]

    M. Webster, D. J. Browning, J. M. Corker, Acta Crystallogr. 1996, C52, 2439.Google Scholar

  • [22]

    J. Gromada, A. Mortreux, T. Chenal, J. W. Ziller, F. Leising, J.-F. Carpentier, Chem. Eur. J. 2002, 8, 3773.CrossrefGoogle Scholar

  • [23]

    Y. Tang, L. N. Zakharov, A. L. Rheingold, R. A. Kemp, Organometallics 2005, 24, 836.CrossrefGoogle Scholar

  • [24]

    M. F. Zuniga, J. Kreutzer, W. Teng, K. Ruhlandt-Senge, Inorg. Chem. 2007, 46, 10400.CrossrefGoogle Scholar

  • [25]

    J. Pahl, S. Brand, H. Elsen, S. Harder, Chem. Commun. 2018, 54, 8685.CrossrefGoogle Scholar

  • [26]

    Ł. Mąkolski, K. Zelga, R. Petrus, D. Kubicki, P. Zarzycki, P. Sobota, J. Lewiński, Chem. Eur. J. 2014, 20, 14790.CrossrefGoogle Scholar

  • [27]

    S. S. Batsanov, Inorg. Mater. 2001, 37, 871.CrossrefGoogle Scholar

  • [28]

    H. Li, R.-Y. Zhu, W.-J. Shi, K.-H. He, Z.-J. Shi, Org. Lett. 2012, 14, 4850.CrossrefGoogle Scholar

  • [29]

    G. M. Sheldrick, Sadabs, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Göttingen (Germany) 2001.Google Scholar

  • [30]

    G. M. Sheldrick, Shelxs/l-97, Programs for Crystal Structure Determination, University of Göttingen, Göttingen (Germany) 1997.Google Scholar

  • [31]

    G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467.Google Scholar

  • [32]

    G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.Google Scholar

  • [33]

    G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.Google Scholar

About the article

Received: 2018-08-21

Accepted: 2018-09-04

Published Online: 2018-09-24

Published in Print: 2018-11-27


Citation Information: Zeitschrift für Naturforschung B, Volume 73, Issue 11, Pages 943–951, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0176.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sumanta Banerjee, Ankur Ankur, Alex P. Andrews, Babu Varghese, and Ajay Venugopal
Dalton Transactions, 2019, Volume 48, Number 21, Page 7313

Comments (0)

Please log in or register to comment.
Log in