Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Volume 73, Issue 5

Issues

Synthesis of hexahydro-4-phenylquinoline-3-carbonitriles using Fe3O4@SiO2-SO3H nanoparticles as a superior and retrievable heterogeneous catalyst under ultrasonic irradiations

Javad Safaei-Ghomi
  • Corresponding author
  • Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, I.R. Iran, Phone: +98-31-55912385, Fax: +98-31-55912397
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Reza Aghagoli
  • Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, I.R. Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hossein Shahbazi-Alavi
  • Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, I.R. Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-01 | DOI: https://doi.org/10.1515/znb-2017-0200

Abstract

An efficient synthesis of hexahydro-4-phenylquinoline-3-carbonitriles is described by the four-component condensation reaction of cyclohexanone, ammonium acetate, malononitrile, and aromatic aldehydes using Fe3O4@SiO2-SO3H nanoparticles as a superior and retrievable heterogeneous catalyst under ultrasonic irradiations. The reusability of the catalyst and little catalyst loading, excellent yields, short reaction times, using the sonochemical procedure as a green process and an alternative energy source are some benefits of this method.

This article offers supplementary material which is provided at the end of the article.

Keywords: nanocatalyst; nano-Fe3O4; one-pot reaction; quinoline; ultrasonic conditions

References

  • [1]

    R. S. Upadhayaya, S. V. Lahore, A. Y. Sayyed, S. S. Dixit, P. D. Shinde, J. Chattopadhyaya, Org. Biomol. Chem. 2010, 8, 2180.CrossrefGoogle Scholar

  • [2]

    A. B. A. El-Gazzar, H. N. Hafez, G. A. M. Nawwar, Eur. J. Med. Chem. 2009, 44, 1427.CrossrefGoogle Scholar

  • [3]

    E. Rajanarendar, M. N. Reddy, S. R. Krishna, K. R. Murthy, Y. N. Reddy, M. V. Rajam, Eur. J. Med. Chem. 2012, 55, 273.CrossrefGoogle Scholar

  • [4]

    A. Shi, T. A. Nguyen, S. K. Battina, S. Rana, D. J. Takemoto, P. K. Chiang, D. H. Hua, Bioorg. Med. Chem. Lett. 2008, 18, 3364.CrossrefGoogle Scholar

  • [5]

    S. Vangapandu, M. Jain, R. Jain, S. Kaur, P. P. Singh, Bioorg. Med. Chem. 2004, 12, 2501.CrossrefGoogle Scholar

  • [6]

    N. C. Warshakoon, J. Sheville, R. T. Bhatt, W. Ji, J. L. Mendez-Andino, K. M. Meyers, N. Kim, J. A. Wos, C. Mitchell, J. L. Paris, B. B. Pinney, O. Reizes, X. E. Hu, Bioorg. Med. Chem. Lett. 2006, 16, 5207.CrossrefGoogle Scholar

  • [7]

    B. R. Mcnaughton, B. L. Miller, Org. Lett. 2003, 5, 4257.CrossrefGoogle Scholar

  • [8]

    G. Babu, P. T. Perumal, Tetrahedron Lett. 1998, 39, 3225.CrossrefGoogle Scholar

  • [9]

    S. K. De, R. A. Gibbs, Tetrahedron Lett. 2005, 46, 1647.CrossrefGoogle Scholar

  • [10]

    S. S. Palimkar, S. A. Siddiqui, T. Daniel, R. J. Lahoti, K. V. Srinivasan, J. Org. Chem. 2003, 68, 9371.CrossrefGoogle Scholar

  • [11]

    A. Shaabani, A. Rahmati, Z. Badri, Catal. Commun. 2008, 9, 13.CrossrefGoogle Scholar

  • [12]

    J. Wu, H. G. Xia, K. Gao, Org. Biomol. Chem. 2006, 4, 126.CrossrefGoogle Scholar

  • [13]

    J. Safaei-Ghomi, H. Shahbazi-Alavi, Sci. Iran. Trans. C 2017, 24, 1209.Google Scholar

  • [14]

    J. Safaei-Ghomi, H. Shahbazi-Alavi, P. Babaei, Z. Naturforsch. 2016, 71b, 849.Google Scholar

  • [15]

    M. B. Gawande, P. S. Branco, R. S. Varma, Chem. Soc. Rev. 2013, 42, 3371.CrossrefGoogle Scholar

  • [16]

    A. Rabiei, S. Abdolmohammadi, F. Shafaei, Z. Naturforsch. 2017, 72b, 241.Google Scholar

  • [17]

    A. Maleki, R. Paydar, RSC Adv. 2015, 5, 33177.CrossrefGoogle Scholar

  • [18]

    J. Safaei-Ghomi, S. Paymard-Samani, S. Zahedi, H. Shahbazi-Alavi, Z. Naturforsch. 2015, 70b, 819.Google Scholar

  • [19]

    K. Turhan, S. A. Ozturkcan, M. Uluer, Z. Turgut, Acta Chim. Slov. 2014, 61, 623.Google Scholar

  • [20]

    P. Estifaee, M. Haghighi, N. Mohammadi, F. Rahmani, Ultrason. Sonochem. 2014, 21, 1155.CrossrefGoogle Scholar

  • [21]

    N. Shabalala, R. Pagadala, S. B. Jonnalagadda, Ultrason. Sonochem. 2015, 27, 423.CrossrefGoogle Scholar

  • [22]

    C. W. Lu, J. J. Wang, Y. H. Liu, W. J. Shan, Q. Sun, L. Shi, Res. Chem. Intermed. 2017, 43, 943.CrossrefGoogle Scholar

  • [23]

    J. Safaei-Ghomi, F. Eshteghal, H. Shahbazi-Alavi, Ultrason. Sonochem. 2016, 33, 99.CrossrefGoogle Scholar

  • [24]

    J. Safaei-Ghomi, H. Shahbazi-Alavi, J. Saudi Chem. Soc. 2017, 21, 698.CrossrefGoogle Scholar

  • [25]

    M. Iranmanesh, J. Hulliger, Chem. Soc. Rev. 2017, 46, 5925.CrossrefGoogle Scholar

  • [26]

    S. H. Moon, S. H. Noh, J. H. Lee, T. H. Shin, Y. Lim, J. Cheon, Nano Lett. 2017, 17, 800.CrossrefGoogle Scholar

  • [27]

    J. Liang, Y. Wu, C. Liu, Y. C. Cao, J. A. Liu, Y. Lin, Sens. Actuators B 2017, 241, 758.CrossrefGoogle Scholar

  • [28]

    M. B. El-Ashmawy, M. A. El-Sherbeny, N. S. El-Gohary, Med. Chem. Res. 2013, 22, 2724.CrossrefGoogle Scholar

  • [29]

    M. M. Heravi, S. Y. S. Beheshtiha, M. Dehghani, N. Hosseintash, J. Iran. Chem. Soc. 2015, 12, 2075.CrossrefGoogle Scholar

About the article

Received: 2017-11-10

Accepted: 2018-02-25

Published Online: 2018-05-01

Published in Print: 2018-05-24


Citation Information: Zeitschrift für Naturforschung B, Volume 73, Issue 5, Pages 269–274, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2017-0200.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in