Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year

IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

See all formats and pricing
More options …
Volume 73, Issue 5


2-Naphthol-pyrazole conjugates as substrates in the Mannich reaction

Gheorghe Roman
  • Corresponding author
  • Department of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, 700487 Iaşi, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-20 | DOI: https://doi.org/10.1515/znb-2017-0209


Several novel 2-naphthol-pyrazole conjugates have been synthesized through the O-alkylation of 1-[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]naphthalen-2-ol with methyl iodide, benzyl chloride, methyl bromoacetate and N-benzyl-2-bromoacetamide. The aminomethylation of these 2-naphthol-pyrazole conjugates has been examined employing the classical conditions for the Mannich reaction, and also by using N,N-dimethylmethyleneiminium chloride as preformed aminomethylating reagent. In both situations, aminomethylation of these substrates occurred at C-4 of the pyrazole ring. The bifunctional substrate 1-[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]naphthalen-2-ol has been chemoselectively aminomethylated in the pyrazole ring using the same preformed aminomethylating reagent.

This article offers supplementary material which is provided at the end of the article.

Keywords: 2-naphthols; aminomethylation; Mannich reaction; pyrazoles


  • [1]

    M. F. Khan, M. M. Alam, G. Verma, W. Akhtar, M. Akhter, M. Shaquiquzzaman, Eur. J. Med. Chem. 2016, 120, 170.CrossrefGoogle Scholar

  • [2]

    R. S. Keri, K. Chand, T. Ramakrishnappa, B. M. Nagaraja, Arch. Pharm. (Weinheim) 2015, 348, 299.CrossrefGoogle Scholar

  • [3]

    Ş. G. Küçükgüzel, S. Şenkardeş, Eur. J. Med. Chem. 2015, 97, 786.CrossrefGoogle Scholar

  • [4]

    H. Kumar, D. Saini, S. Jain, N. Jain, Eur. J. Med. Chem. 2013, 70, 248.CrossrefGoogle Scholar

  • [5]

    R. Pérez-Fernández, P. Goya, J. Elguero, ARKIVOC 2014, ii, 233.Google Scholar

  • [6]

    J.-J. Liu, M.-Y. Zhao, X. Zhang, X. Zhao, H.-L. Zhu, Mini-Rev. Med. Chem. 2013, 13, 1957.CrossrefGoogle Scholar

  • [7]

    A. A. Bekhit, A. Hymete, A. El-Din A. Bekhit, A. Damtew, H. Y. Aboul-Enein, Mini-Rev. Med. Chem. 2010, 10, 1014.CrossrefGoogle Scholar

  • [8]

    A. M. Kalle, A. Mallika, J. Badiger, Alinakhi, P. Talukdar, Sachchidanand, Biochem. Biophys. Res. Commun. 2010, 401, 13.CrossrefGoogle Scholar

  • [9]

    F. Xie, B. X. Li, A. Kassenbrock, C. Xue, X. Wang, D. Z. Qian, R. C. Sears, X. Xiao, J. Med. Chem. 2015, 58, 5075.CrossrefGoogle Scholar

  • [10]

    S. Y. Shin, S. Ahn, H. Yoon, H. Jung, Y. Jung, D. Koh, Y. H. Lee, Y. Lim, Bioorg. Med. Chem. Lett. 2016, 26, 4301.CrossrefGoogle Scholar

  • [11]

    J. Qin, P. Xie, C. Ventocilla, G. Zhou, A. Vultur, Q. Chen, Q. Liu, M. Herlyn, J. Winkler, R. Marmorstein, J. Med. Chem. 2012, 55, 5220.CrossrefGoogle Scholar

  • [12]

    K. Bujnowski, L. Synoradzki, R. C. Darłak, T. A. Zevaco, E. Dinjus, RSC Adv. 2016, 6, 114758.CrossrefGoogle Scholar

  • [13]

    G. Roman, V. Năstasă, A.-C. Bostănaru, M. Mareş, Bioorg. Med. Chem. Lett. 2016, 26, 2498.CrossrefGoogle Scholar

  • [14]

    H. Seki, S. Xue, M. S. Hixon, S. Pellett, M. Reme, E. A. Johnson, K. D. Janda, Chem. Commun. 2015, 51, 6226.CrossrefGoogle Scholar

  • [15]

    M. C. Sharma, S. Sharma, P. Sharma, A. Kumar, Med. Chem. Res. 2013, 22, 5390.CrossrefGoogle Scholar

  • [16]

    K. Urbahns, T. Yura, M. Mogi, M. Tajimi, H. Fujishima, T. Masuda, N. Yoshida, T. Moriwaki, T. B. Lowinger, H. Meier, F. Chan, D. Madge, J. B. Gupta, Bioorg. Med. Chem. Lett. 2011, 21, 3354.CrossrefGoogle Scholar

  • [17]

    G.-L. Li, J.-Y. He, A. Zhang, Y. Wan, B. Wang, W.-H. Chen, Eur. J. Med. Chem. 2011, 46, 4050.CrossrefGoogle Scholar

  • [18]

    P. Piplani, P. Singh, A. Sharma, Med. Chem. 2013, 9, 371.CrossrefGoogle Scholar

  • [19]

    P. Piplani, R. Malik, B. Kaur, A. Kaplish, Med. Chem. Res. 2012, 21, 1771.CrossrefGoogle Scholar

  • [20]

    G. Roman, Eur. J. Med. Chem. 2015, 89, 743.CrossrefGoogle Scholar

  • [21]

    G. Roman, C. R. Acad. Bulg. Sci. 2005, 58, 397.Google Scholar

  • [22]

    K. K. Sivakumar, A. Rajasekaran, P. Senthilkumar, P. P. Wattamwar, Bioorg. Med. Chem. Lett. 2014, 24, 2940.CrossrefGoogle Scholar

  • [23]

    G. Esquius, J. Pons, R. Yáñez, J. Ros, X. Solans, M. Font-Bardía, J. Organomet. Chem. 2000, 605, 226.CrossrefGoogle Scholar

  • [24]

    S. A. Chavez, A. J. Martinko, C. Lau, M. N. Pham, K. Cheng, D. E. Bevan, T. E. Mollnes, H. Yin, J. Med. Chem. 2011, 54, 4659.CrossrefGoogle Scholar

  • [25]

    M. Arend, B. Westermann, N. Risch, Angew. Chem. Int. Ed. 1998, 37, 1044.CrossrefGoogle Scholar

  • [26]

    G. Roman, Tetrahedron Lett. 2014, 55, 1229.CrossrefGoogle Scholar

  • [27]

    A. Pochini, G. Puglia, R. Ungaro, Synthesis 1983, 906.Google Scholar

  • [28]

    H.-J. Grumbach, M. Arend, N. Risch, Synthesis 1996, 883.Google Scholar

  • [29]

    C. Jöst, C. Nitsche, T. Scholz, L. Roux, C. D. Klein, J. Med. Chem. 2014, 57, 7590.CrossrefGoogle Scholar

About the article

Received: 2017-12-12

Accepted: 2018-02-25

Published Online: 2018-03-20

Published in Print: 2018-05-24

Citation Information: Zeitschrift für Naturforschung B, Volume 73, Issue 5, Pages 275–280, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2017-0209.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in