Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year

IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

See all formats and pricing
More options …
Volume 73, Issue 5


Metal-free catalyzed arylsulfonylation of chloroquinoline with sodium arylsulfinates under microwave irradiation

Xi-Yong Li
  • Department of Marine Biology and Medicine, Weihai Ocean Vocational College, Weihai 264300, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ya-Min Sun
  • Department of Marine Biology and Medicine, Weihai Ocean Vocational College, Weihai 264300, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jin-Wei Yuan
  • Corresponding author
  • School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-19 | DOI: https://doi.org/10.1515/znb-2018-0007


An efficient protocol for the synthesis of 2-arylsulfonyl quinolines has been developed via a metal-free catalyzed cross-coupling reaction of chloroquinoline with sodium arylsulfinates in moderate-to-good yields under microwave irradiation. The reactions proceed with a wide range of substrates with good functional group tolerance.

This article offers supplementary material which is provided at the end of the article.

Keywords: 2-arylsulfonyl quinolone; chloroquinoline; metal-free catalysis; sodium arylsulfinates; sulfonylation


  • [1]

    E. J. Emmett, M. C. Willis, Asian J. Org. Chem. 2015, 4, 602.CrossrefGoogle Scholar

  • [2]

    G. Liu, C. Fan, J. Wu, Org. Biomol. Chem. 2015, 13, 1592.CrossrefGoogle Scholar

  • [3]

    J. Aziz, S. Messaoudi, M. Alami, A. Hamze, Org. Biomol. Chem. 2014, 12, 9743.CrossrefGoogle Scholar

  • [4]

    N. W. Liu, S. Liang, G. Manolikakes, Synthesis 2016, 48, 1939.CrossrefGoogle Scholar

  • [5]

    E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257.CrossrefGoogle Scholar

  • [6]

    X. C. Hang, T. Fleetham, E. Turner, J. Brooks, J. Li, Angew. Chem. Int. Ed. 2013, 52, 6753.CrossrefGoogle Scholar

  • [7]

    M. A. Grassberger, F. Turnowsky, J. Hildebrandt, J. Med. Chem. 1984, 27, 947.CrossrefGoogle Scholar

  • [8]

    H. Y. Lee, J. Y. Chang, C. Y. Nien, C. C. Kuo, K. H. Shih, C. H. Wu, C. Y. Chang, W. Y. Lai, J. P. Liou, J. Med. Chem. 2011, 54, 8517.CrossrefGoogle Scholar

  • [9]

    W. G. Trankle, M. E. Kopach, Org. Process Res. Dev. 2007, 11, 913.CrossrefGoogle Scholar

  • [10]

    Z. Y. Wu, H. Y. Song, X. L. Cui, C. Pi, W. W. Du, Y. J. Wu, Org. Lett. 2013, 15, 1270.CrossrefGoogle Scholar

  • [11]

    K. Sun, X. L. Chen, X. Li, L. B. Qu, W. Z. Bi, X. Chen, H. L. Ma, S. T. Zhang, B. W. Han, Y. F. Zhao, C. J. Li, Chem. Commun. 2015, 51, 12111.CrossrefGoogle Scholar

  • [12]

    R. J. Wang, Z. B. Zeng, C. Chen, N. N. Yi, J. Jiang, Z. Cao, W. Deng, J. N. Xiang, Org. Biomol. Chem. 2016, 14, 5317.CrossrefGoogle Scholar

  • [13]

    Y. Su, X. J. Zhou, C. L. He, W. Zhang, X. Ling, X. Xiao, J. Org. Chem. 2016, 81, 4981.CrossrefGoogle Scholar

  • [14]

    B. N. Du, P. Qian, Y. Wang, H. B. Mei, J. L. Han, Y. Pan, Org. Lett. 2016, 18, 4144.CrossrefGoogle Scholar

  • [15]

    W. K. Fu, K. Sun, C. Qu, X. L. Chen, L. B. Qu, W. Z. Bi, Y. F. Zhao, Asian J. Org. Chem. 2017, 6, 492.CrossrefGoogle Scholar

  • [16]

    L. Sumunnee, C. Buathongjan, C. Pimpasri, S. Yotphan, Eur. J. Org. Chem. 2017, 2017, 1025.CrossrefGoogle Scholar

  • [17]

    A. V. Ivachtchenko, E. S. Golovina, M. G. Kadieva, V. M. Kysil, O. D. Mitkin, S. E. Tkachenko, I. M. Okun, J. Med. Chem. 2011, 54, 8161.CrossrefGoogle Scholar

  • [18]

    R. A. Hartz, A. G. Arvanitis, C. Arnold, J. P. Rescinito, K. L. Hung, G. Zhang, H. Wong, D. R. Langlev, P. J. Gilligan, G. L. Trainor, Bioorg. Med. Chem. Lett. 2006, 16, 934.CrossrefGoogle Scholar

  • [19]

    S. C. Surprenant, W. Y. Chan, C. Berthelette, Org. Lett. 2003, 5, 4851.CrossrefGoogle Scholar

  • [20]

    N. S. Li, L. Scharf, E. J. Adams, J. A. Piccirilli, J. Org. Chem. 2013, 78, 5970.CrossrefGoogle Scholar

  • [21]

    S. Liang, R. Y. Zhang, L. Y. Xi, S. Y. Chen, X. Q. Yu, J. Org. Chem. 2013, 78, 11874.CrossrefGoogle Scholar

  • [22]

    W. Zhu, D. W. Ma, J. Org. Chem. 2005, 70, 2696.CrossrefGoogle Scholar

  • [23]

    S. Cacchi, G. Fabrizi, A. Goggiamani, L. M. Parisi, R. Bernini, J. Org. Chem. 2004, 69, 5608.CrossrefGoogle Scholar

  • [24]

    K. M. Maloney, J. T. Kuethe, K. Linn, Org. Lett. 2011, 13, 102.CrossrefGoogle Scholar

  • [25]

    Y. Q. Yuan, S. R. Guo, Synlett 2011, 18, 2750.Google Scholar

  • [26]

    B. Qu, L. P. Samankumara, J. Savoie, D. R. Fandrick, N. Haddad, X. Wei, S. Ma, H. Lee, S. Rodriguez, C. A. Busacca, N. K. Yee, J. J. Song, J. Org. Chem. 2014, 79, 993.CrossrefGoogle Scholar

  • [27]

    D. J. Brown, P. W. Ford, J. Chem. Soc. C 1967, 7, 568.Google Scholar

About the article

Received: 2018-01-06

Accepted: 2018-03-30

Published Online: 2018-04-19

Published in Print: 2018-05-24

Citation Information: Zeitschrift für Naturforschung B, Volume 73, Issue 5, Pages 295–303, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0007.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in