Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year

IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

See all formats and pricing
More options …
Volume 73, Issue 7


Chemistry and spectroscopy of cross-conjugated and pseudo-cross-conjugated quinolinium-ethynyl-benzoate mesomeric betaines

Sviatoslav Batsyts
  • Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francisco J. Ramírez
  • Department of Physical Chemistry, Faculty of Sciences, University of Málaga, E-29071 Málaga, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juan Casado
  • Department of Physical Chemistry, Faculty of Sciences, University of Málaga, E-29071 Málaga, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan C. Namyslo
  • Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Schmidt
  • Corresponding author
  • Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-18 | DOI: https://doi.org/10.1515/znb-2018-0020


The three isomers 1-methylquinolinium-2-, 3-, and 4-ethynyl(phenyl-4-carboxylates) belong to two distinct types of heterocyclic mesomeric betaines. The quinolinium substituted in position 3 is a cross-conjugated mesomeric betaine (CCMB), whereas the quinolinium derivatives substituted in positions 2 and 4 are members of the class of pseudo-cross-conjugated mesomeric betaines (PCCMBs). While the charges are strictly separated within the common π-electron system of the CCMB according to the canonical formulae, the charges are effectively but not exclusively delocalized in the PCCMBs because cumulenoid resonance forms including electron sextet structures without external octet stabilization can be formed in accordance with the definition of PCCMBs. As a consequence, despite being closely related structures, the three isomers differ in their chemical and spectroscopic behaviors. Thus, on trying to hydrolyze the ester group of the methyl quinolinium-2-ethynyl-benzoate into the corresponding acid by subsequent treatment with sodium hydroxide in methanol and aqueous hydrochloric acid at pH 3, the acetal methyl 1,1-dimethoxy-2-(quinolinium-ylidene)ethyl]benzoate and the corresponding β-enamino carbonyl compound were formed, respectively. The corresponding acids of the 2- and 4-substituted quinolinium-ethynyl-benzoates were obtained by a modified procedure. On deprotonation, the resulting cross-conjugated quinolinium-3-ethynyl-benzoate betaine proved to be stable, whereas the corresponding pseudo-cross-conjugated quinolinium-2- and -4-ethynyl-benzoate betaines decomposed. Frontier orbital profiles were calculated, and IR and Raman spectra of the starting materials were measured and calculated to analyze the differences of CCMBs and PCCMBs of mesomeric betaines possessing triple bonds. A higher contribution of the cumulenoid resonance forms to the overall structure of the PCCMBs was determined.

Keywords: acetylenes; mesomeric betaines; N-heterocyclic carbenes; quinolinium-carboxylates


  • [1]

    W. D. Ollis, S. P. Stanforth, C. A. Ramsden, Tetrahedron 1985, 41, 2239–2329.CrossrefGoogle Scholar

  • [2]

    A. Schmidt, S. Wiechmann, C. F. Otto, Adv. Heterocycl. Chem. 2016, 119, 143–172.CrossrefGoogle Scholar

  • [3]

    A. Schmidt, S. Wiechmann, T. Freese, ARKIVOC 2013, i, 424–469.Google Scholar

  • [4]

    C. A. Ramsden, W. P. Oziminski, J. Org. Chem. 2017, 82, 12485–12491.CrossrefGoogle Scholar

  • [5]

    C. A. Ramsden, Tetrahedron 2013, 69, 4146–4159.CrossrefGoogle Scholar

  • [6]

    C. A. Ramsden, W. P. Oziminski, Tetrahedron 2014, 70, 7158–7165.CrossrefGoogle Scholar

  • [7]

    C. A. Ramsden, Progr. Heterocycl. Chem. 2016, 28, 1–25.Google Scholar

  • [8]

    H. Quast, E. Schmitt, Justus Liebigs Ann. Chem. 1970, 732, 64–69.CrossrefGoogle Scholar

  • [9]

    A. Gonzalez, F. Schroeder, J. Meinwald, T. Eisner, J. Nat. Prod. 1999, 62, 378–380.CrossrefGoogle Scholar

  • [10]

    A. Gonzalez, J. F. Hare, T. Eisner, Chemoecology 1999, 9, 177–185.CrossrefGoogle Scholar

  • [11]

    A. Schmidt, Adv. Heterocycl. Chem. 2003, 85, 67–171.CrossrefGoogle Scholar

  • [12]

    P. Barczynski, M. Szafran, Pol. J. Chem. 2009, 83, 1061–1074.Google Scholar

  • [13]

    P. Barczynski, A. Katrusiak, J. Koput, M. Szafran, J. Mol. Struct. 2008, 889, 394–407.CrossrefGoogle Scholar

  • [14]

    D. G. Lynn, D. H. Lewis, W. A. Tramontano, L. S. Evans, Phytochemistry 1984, 23, 1225–1228.CrossrefGoogle Scholar

  • [15]

    F. Gourand, G. Mercey, M. Ibazizène, O. Tirel, J. Henry, V. Levacher, C. L. Perrio Barré, J. Med. Chem. 2010, 53, 1281–1287.CrossrefGoogle Scholar

  • [16]

    K. T. Potts, P. M. Murphy, W. R. Kuehnling, J. Org. Chem. 1988, 53, 2889–2898.CrossrefGoogle Scholar

  • [17]

    K. T. Potts, P. M. Murphy, M. R. DeLuca, W. R. Kuehnling, J. Org. Chem. 1988, 53, 2898–2910.CrossrefGoogle Scholar

  • [18]

    A. R. Katritzky, R. Awartani, R. C. Patel, J. Org. Chem. 1982, 47, 498–502.CrossrefGoogle Scholar

  • [19]

    K. W. Ratts, R. K. Howe, W. G. Phillips, J. Am. Chem. Soc. 1969, 91, 6115–6121.CrossrefGoogle Scholar

  • [20]

    H. Quast, E. Schmitt, Liebigs Ann. Chem. 1970, 732, 43–63.CrossrefGoogle Scholar

  • [21]

    A. R. Katritzky, H. M. Faid-Allah, Synthesis 1983, 2, 149–151.Google Scholar

  • [22]

    P. Dyson, D. L. Hammick, J. Chem. Soc. 1937, 1724–1725.Google Scholar

  • [23]

    H. Quast, A. Gelleri, Justus Liebigs Ann. Chem. 1975, 929–938.Google Scholar

  • [24]

    A. Schmidt, A. Beutler, M. Albrecht, F. J. Ramírez, Org. Biomol. Chem. 2008, 6, 287–295.CrossrefGoogle Scholar

  • [25]

    M. Fèvre, J. Pinaud, A. Leteneur, Y. Gnanou, J. Vignolle, D. Taton, K. Miqueu, J.-M. Sotiropoulos, J. Am. Chem. Soc. 2012, 134, 6776–6784.CrossrefGoogle Scholar

  • [26]

    X. Sauvage, A. Demonceau, L. Delaude, Adv. Synth. Catal. 2009, 351, 2031–2038.CrossrefGoogle Scholar

  • [27]

    A. Schmidt, N. Münster, A. Dreger, Angew. Chem. Int. Ed. 2010, 49, 2790–2793.CrossrefGoogle Scholar

  • [28]

    Z. Guan, M. Gjikaj, A. Schmidt, Heterocycles 2014, 10, 2356–2367.Google Scholar

  • [29]

    Z. Guan, S. Wiechmann, M. Drafz, E. Hübner, A. Schmidt, Org. Biomol. Chem. 2013, 11, 3558–3567.CrossrefGoogle Scholar

  • [30]

    A. Schmidt, L. Merkel, W. Eisfeld, Eur. J. Org. Chem. 2005, 2124–2130.Google Scholar

  • [31]

    C. Böttinger, Liebigs Ann. Chem. 1881, 208, 122–141.CrossrefGoogle Scholar

  • [32]

    L. Bouveault, Compt. Rend. 1896, 122, 1543–1545.Google Scholar

  • [33]

    R. Breslow, J. Am. Chem. Soc. 1958, 80, 3719–3726.CrossrefGoogle Scholar

  • [34]

    A. Schmidt, S. Batsyts, A. Smeyanov, T. Freese, E. G. Hübner, M. Nieger, J. Org. Chem. 2016, 81, 4202–4209.CrossrefGoogle Scholar

  • [35]

    B. Tuesuwan, S. M. Kerwin, Biochemistry 2006, 45, 7265–7276.CrossrefGoogle Scholar

  • [36]

    A. Smeyanov, J. Adams, E. G. Hübner, A. Schmidt, Tetrahedron 2017, 73, 3106–3111.CrossrefGoogle Scholar

  • [37]

    S. Haindl, J. Xu, T. Freese, E. G. Hübner, A. Schmidt, Tetrahedron 2016, 72, 7906–7911.CrossrefGoogle Scholar

  • [38]

    M. Ferreira, M. F. Rubner, Macromolecules 1995, 28, 7107–7114.CrossrefGoogle Scholar

  • [39]

    B.-C. Ku, D. K. Kim, J. S. Lee, A. Blumstein, J. Kumar, L. A. Samuelson, Polym. Compos. 2009, 30, 1817–1824.CrossrefGoogle Scholar

  • [40]

    L. Balogh, A. De Leuze-Jallouli, P. Dvornic, Y. Kunugi, A. Blumstein, D. A. Tomalia, Macromolecules 1999, 32, 1036–1042.CrossrefGoogle Scholar

  • [41]

    A. Schmidt, M. Nieger, Heterocycles 1999, 51, 2119–2126.CrossrefGoogle Scholar

  • [42]

    M. Liu, M. Nieger, E. Hübner, A. Schmidt, Chem. Eur. J. 2016, 5416–5424.Google Scholar

  • [43]

    A. Rahimi, J. C. Namyslo, M. Drafz, J. Halm, E. Hübner, M. Nieger, N. Rautzenberg, A. Schmidt, J. Org. Chem. 2011, 76, 7316–7325.CrossrefGoogle Scholar

  • [44]

    A. Smeyanov, A. Schmidt, Synth. Commun. 2013, 20, 2809–2816.Google Scholar

  • [45]

    A. Rosowsky, R. A. Forsch, C. H. Sibley, C. B. Inderlied, S. F. Queener, J. Med. Chem. 2004, 47, 1475–1486.CrossrefGoogle Scholar

  • [46]

    Y. Zhang, T. Han, S. Gu, T. Zhou, C. Zhao, Y. Guo, X. Feng, B. J. Tong, J. Shi, J. Zhi, Y. Dong, Chem. Eur. J. 2014, 20, 8856–8861.Google Scholar

  • [47]

    X. Li, S. Sun, F. Yang, J. Kang, Y. Wu, Y. Wu, Org. Biomol. Chem. 2015, 13, 2432–2436.CrossrefGoogle Scholar

  • [48]

    E. Paegle, S. Belyakov, M. Petrova, E. Liepinsh, P. Arsenyan, Eur. J. Org. Chem. 2015, 4389–4399.Google Scholar

About the article

Received: 2018-01-22

Accepted: 2018-02-19

Published Online: 2018-05-18

Published in Print: 2018-07-26

Citation Information: Zeitschrift für Naturforschung B, Volume 73, Issue 7, Pages 481–491, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0020.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in