Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Volume 73, Issue 7

Issues

Iminiumsalz-Strukturen bei der durch Pyridoxalphosphat (Vitamin B6) katalysierten Bildung von Aromastoffen und Fehlaromen im Wein

Iminium salt structures in the pyridoxal phosphate (vitamin B6) catalyzed formation of aroma compounds and off-odors in wine

Nikolaus Müller
Published Online: 2018-06-05 | DOI: https://doi.org/10.1515/znb-2018-0038

Abstract

Enzymes that use pyridoxal phosphate (PLP, Vitamin B6) as cofactor constitute a ubiquitous class of biocatalysts. A variety of PLP-dependant enzymes mainly involved in biochemical pathways concerning amino acid metabolism are found in all forms of life. These enzymes also play an important role in wine production, as well in grape growing as in enological processes. The formation of pleasant aroma compounds often runs with participation of pyridoxal-dependant enzymes. But these are also brought into context with the formation of off-odors, especially from sulfur compounds (i.e. sulfur containing amino acids cysteine, methionine). The versatility of PLP-dependant bioreactions arises from its ability to covalently bind the substrate and then to function as an electrophilic catalyst, thereby stabilizing different types of carbanionic reaction intermediates, containing iminium salt structures. This article summarizes the influence of PLP on sensorically important aroma compounds in wine growing and wine processing.

Keywords: off-odors; pyridoxal phosphate; sulfur metabolism in wine making processes; wine aroma

Literatur

  • [1]

    N. Müller, Z. Naturforsch. 2014, 69b, 489.Google Scholar

  • [2]

    G. Schneider, H. Käck, Y. Lindquist, Structure 2000, 8, R1.CrossrefGoogle Scholar

  • [3]

    S. A. Harris, K. Folkerts, J. Am. Chem. Soc. 1939, 61, 1245.CrossrefGoogle Scholar

  • [4]

    E. E. Snell, J. Biol. Chem. 1944, 154, 313.Google Scholar

  • [5]

    R. Percudani, P. Alessio, EMBO Rep. 2003, 4, 850.CrossrefGoogle Scholar

  • [6]

    V. Samakai, Master Thesis, Carleton University, Ottawa, 2015.Google Scholar

  • [7]

    A. L. Waterhouse, G. L. Sacks, D. W. Jeffery, Understanding Wine Chemistry, John Wiley, Chichester, 2016.Google Scholar

  • [8]

    T. B. Fitzpatrick, N. Amrhein, B. Kappes, P. Macheroux, I. Tews, T. Raschle, Biochem. J. 2007, 407, 1.CrossrefGoogle Scholar

  • [9]

    T. Mukherje, J. Hanes, I. Tews, S. E. Ealick, T. B. Begly, Biochim Biophys Acta 2011, 1814, 1585.CrossrefGoogle Scholar

  • [10]

    R. A. John, Biochim. Biophys. Acta 1995, 1248, 81.CrossrefGoogle Scholar

  • [11]

    P. K. Mehta, P. Christen in Advances in Enzymology and Related Areas of Molecular Biology, Bd. 74, (Hrsg.: D. L. Purich), John Wiley, Hoboken, 2006, pp. 129–184.Google Scholar

  • [12]

    M. D. Toney, Biochim. Biophys. Acta 2011, 1814, 1407.CrossrefGoogle Scholar

  • [13]

    W. R. Griswold, M. D. Toney, J. Am. Chem. Soc. 2011, 133, 14823.CrossrefGoogle Scholar

  • [14]

    M. Chan-Huot, A. Dos, R. Zander, S. Sharif, P. M. Tolstoy, S. Compton, E. Fogle, M. D. Toney, I. Shenderovich, G.S. Denisov, H.-H. Limbach, J. Am. Chem. Soc. 2013, 135, 18160.CrossrefGoogle Scholar

  • [15]

    S. Dajnowicz, J. M. Parks, X. Hu, K. Gesler, A. Y. Kovalevsky, T. C. Mueser, J. Biol. Chem. 2017, 292, 5970.CrossrefGoogle Scholar

  • [16]

    H. H. Dittrich, M. Großmann, Mikrobiologie des Weines, Ulmer, Stuttgart, 2010.Google Scholar

  • [17]

    S. Landaud, S. Helinck, P. Bonnarme, Appl. Microbiol. Biotechnol. 2008, 77, 1191.CrossrefGoogle Scholar

  • [18]

    I. Belda, J. Ruiz, A. Esteban-Fernandez, E. Navascues, D. Marquina, A. Santos, M. V. Moreno-Arribas, Molecules 2017, 22, 1.Google Scholar

  • [19]

    J. H. Swiegers, E. J. Bartowsky, P. A. Henschke, I. S. Pretorius, Aust. J. Grape Wine Res. 2005, 11, 139.CrossrefGoogle Scholar

  • [20]

    H. Hesse, R. Hoefgen, Trends Plant Sci. 2003, 8, 259.CrossrefGoogle Scholar

  • [21]

    L.D. Araujo, S. Vannevel, A. Buica, S. Callerot, B. Fredrizzi, P. A. Kilmartin, W. J. du Toit, Food Res. Int. 2017, 98, 79.CrossrefGoogle Scholar

  • [22]

    C.-W. Huang, M. E. Walker, B. Fredrizzi, R. C. Gardner, V. Jiranek, FEMS Yeast Res. 2017, 17, 1.Google Scholar

  • [23]

    E. J. Bartowsky, I. S.Pretorius in Biology of Microorganisms on Grapes, in Must and in Wine, (Hrsg.: H. Unden, G. König, J. Fröhlich), Springer, Berlin, 2009, pp. 209–231.Google Scholar

  • [24]

    D. Rauhut, in Biology of Microorganisms on Grapes, in Must and in Wine, (Hrsg.: H. Unden, G. König, J. Fröhlich), Springer, Berlin, 2009, pp. 181–207.Google Scholar

  • [25]

    R. G. Matthews, A. E. Smith, Z. S. Zhou, R. T. Taurog, V. Bandarian, J. C. Evans, M. Ludwig, Helv. Chim. Acta 2003, 86, 3939.CrossrefGoogle Scholar

  • [26]

    D. Thomas, Y. Surdin-Kerjan, Microbiol. Mol. Biol. Rev. 1997, 61, 503.Google Scholar

  • [27]

    H. Wakabayashi, Dissertation, Technische Universität München, München, 2004.

  • [28]

    A. J. L. Cooper, J. T. Pinto, Amino Acids 2006, 30, 1.CrossrefGoogle Scholar

  • [29]

    N. Müller, D. Rauhut in Deutsches Weinbau Jahrbuch 2018 (Hrsg: H. Schultz, M. Stoll), Eugen Ulmer, Stuttgart, 2017, pp. 83–94.Google Scholar

  • [30]

    L. Pripis-Nicolau, G. de Revel, A. Bertrand, A. Maujean, J. Agric. Food Chem. 2000, 40, 3761.Google Scholar

  • [31]

    D. W. Jeffery, Aus. J. Chem. 2016, 69, 1323.CrossrefGoogle Scholar

  • [32]

    P. Helwi, S. Guillimie, C. Thibon, C. Keime, A. Habran, S. Hilbert, E. Gomes, P. Darriet, S. Delrot, C. van Leeuwen, BMC Plant Biology 2016, 16, 1.CrossrefGoogle Scholar

  • [33]

    D. P. Dixon, M. Skipsey, R. Edwards, Phytochemistry 2010, 71, 338.CrossrefGoogle Scholar

  • [34]

    A. Roland, R. Schneider, A. Razungles, F. Cavelier, Chem. Rev. 2011, 111, 7355.CrossrefGoogle Scholar

  • [35]

    P. Herr, Bewertung des Einflusses von Mikroorganismen und oenologischen Faktoren auf die Bildung biogener Amine, Cuvillier-Verlag, Göttingen, 2014.Google Scholar

  • [36]

    G. Rainer, Diplomarbeit, Technische Universität Graz, Graz, 2005.Google Scholar

  • [37]

    F. Langenwalter, Der Deutsche Weinbau 2014, 50.Google Scholar

  • [38]

    P. J. Costello, T. H. Lee, P. Henschke, Aust. J. Grape Wine Res. 2001, 7, 160.CrossrefGoogle Scholar

  • [39]

    E. M. Snowdon, M. C. Bowyer, P. R. Grbin, P. K. Bowyer, J. Agric. Food Chem. 2006, 54, 6465.CrossrefGoogle Scholar

  • [40]

    E. J. Bartowsky, Lett. Appl. Microbiol. 2009, 48, 149.CrossrefGoogle Scholar

  • [41]

    K. Hashizume, T. Samuta, Am. J. Enol. Vitic. 1999, 50, 194.Google Scholar

  • [42]

    A. Rapp, G. Versini, H. Ullemeyer, Vitis 1993, 32, 61.Google Scholar

  • [43]

    A. Rapp, Nahrung 1998, 42, 351.CrossrefGoogle Scholar

  • [44]

    K. Hoenicke, Dissertation, Universität Hamburg, Hamburg, 2002.

  • [45]

    R. R. Nelson, T. E. Acree, C. Y. Lee, R. M. Butts, J. Food Sci. 1977, 42, 57.CrossrefGoogle Scholar

  • [46]

    E. Lemperle, Weinfehler erkennen, Ulmer-Verlag, Stuttgart, 2007.Google Scholar

About the article

Received: 2018-02-24

Accepted: 2018-04-22

Published Online: 2018-06-05

Published in Print: 2018-07-26


Citation Information: Zeitschrift für Naturforschung B, Volume 73, Issue 7, Pages 521–533, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0038.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in