Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences


IMPACT FACTOR 2018: 0.961

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.263
Source Normalized Impact per Paper (SNIP) 2018: 0.505

Online
ISSN
1865-7117
See all formats and pricing
More options …
Volume 74, Issue 4

Issues

High-pressure synthesis and crystal structure of the mixed-cation borate Ga4In4B15O33(OH)3

Daniela Vitzthum
  • Institute for General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hubert Huppertz
  • Corresponding author
  • Institute for General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-03-20 | DOI: https://doi.org/10.1515/znb-2019-0014

Abstract

The mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.

Keywords: crystal structure; gallium borate; high pressure; indium borate

References

  • [1]

    D. Vitzthum, K. Wurst, J. Pann, P. Brüggeller, M. Seibald, H. Huppertz, Angew. Chem. Int. Ed. 2018, 57, 11451.CrossrefGoogle Scholar

  • [2]

    C. Yin, R. Wang, P. Jiang, R. Cong, T. Yang, J. Solid State Chem. 2019, 269, 30.CrossrefGoogle Scholar

  • [3]

    E. Y. Borovikova, K. N. Boldyrev, S. M. Aksenov, E. A. Dobretsova, V. S. Kurazhkovskaya, N. I. Leonyuk, A. E. Savon, D. V. Deyneko, D. A. Ksenofontov, Opt. Mater. 2015, 49, 304.CrossrefGoogle Scholar

  • [4]

    P.-L. Xu, C.-C. Jin, T.-T. Deng, E.-R. Wang, J.-W. Cheng, J. Cluster Sci. 2017, 28, 1431.CrossrefGoogle Scholar

  • [5]

    T. T. Tran, N. Z. Koocher, J. M. Rondinelli, P. S. Halasyamani, Angew. Chem. 2017, 129, 3015.CrossrefGoogle Scholar

  • [6]

    D. An, M. Zhang, D. Li, S. Pan, H. Chen, Z. Yang, Y. Zhu, Y. Sun, H. Zhang, Y. Li, J. Mater. Res. 2015, 30, 2319.CrossrefGoogle Scholar

  • [7]

    D. Vitzthum, L. Bayarjargal, B. Winkler, H. Huppertz, Inorg. Chem. 2018, 57, 5554.CrossrefGoogle Scholar

  • [8]

    D. Vitzthum, K. Wurst, J. Prock, P. Brüggeller, H. Huppertz, Inorg. Chem. 2016, 55, 11473.CrossrefGoogle Scholar

  • [9]

    D. Vitzthum, M. Schauperl, C. M. Strabler, P. Brüggeller, K. R. Liedl, U. J. Griesser, H. Huppertz, Inorg. Chem. 2016, 55, 676.CrossrefGoogle Scholar

  • [10]

    K. Song, M. Yue, W. Gao, R. Cong, T. Yang, J. Alloys Compd. 2016, 684, 346.CrossrefGoogle Scholar

  • [11]

    B. Ma, R. Cong, W. Gao, T. Yang, Catal. Commun. 2015, 71, 17.CrossrefGoogle Scholar

  • [12]

    G. Wang, Y. Jing, J. Ju, D. Yang, J. Yang, W. Gao, R. Cong, T. Yang, Inorg. Chem. 2015, 54, 2945.CrossrefGoogle Scholar

  • [13]

    W. Gao, Y. Jing, J. Yang, Z. Zhou, D. Yang, J. Sun, J. Lin, R. Cong, T. Yang, Inorg. Chem. 2014, 53, 2364.CrossrefGoogle Scholar

  • [14]

    Y. Yang, K. Song, M. Yue, L. Li, R. Cong, W. Gao, T. Yang, Eur. J. Inorg. Chem. 2017, 63.Google Scholar

  • [15]

    H. Huppertz, Z. Kristallogr. 2004, 219, 330.Google Scholar

  • [16]

    D. Walker, M. A. Carpenter, C. M. Hitch, Am. Mineral. 1990, 75, 1020.Google Scholar

  • [17]

    D. Walker, Am. Mineral. 1991, 76, 1092.Google Scholar

  • [18]

    Sadabs 2014/5, Bruker AXS Inc., Madison, Wisconsin (USA) 2001.Google Scholar

  • [19]

    G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.Google Scholar

  • [20]

    G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.Google Scholar

  • [21]

    L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849.CrossrefGoogle Scholar

  • [22]

    D. Vitzthum, S. A. Hering, L. Perfler, H. Huppertz, Z. Naturforsch. 2015, 70b, 207.Google Scholar

  • [23]

    F. Liebau, Structural Chemistry of Silicates, Springer-Verlag, Berlin, 1985.Google Scholar

  • [24]

    E. Zobetz, Z. Kristallogr. 1990, 191, 45.CrossrefGoogle Scholar

  • [25]

    I. D. Brown, D. Altermatt, Acta Crystallogr. 1985, B41, 244.Google Scholar

  • [26]

    N. E. Brese, M. O’Keeffe, Acta Crystallogr. 1991, B47, 192.Google Scholar

About the article

Received: 2019-02-11

Accepted: 2019-02-28

Published Online: 2019-03-20

Published in Print: 2019-04-24


Citation Information: Zeitschrift für Naturforschung B, Volume 74, Issue 4, Pages 357–363, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2019-0014.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in