Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year

IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

See all formats and pricing
More options …
Volume 73, Issue 8


An expedient synthesis of 6-amino-5-[(4-hydroxy-2-oxo-2H-chromen-3-yl)(aryl)methyl]-1,3-dimethyl-2,4,6(1H,3H)-pyrimidinedione derivatives using Fe3O4@TiO2 nanocomposite as an efficient, magnetically separable, and reusable catalyst

Sakineh Fakheri-Vayeghan
  • Department of Chemistry, East Tehran Branch, Islamic Azad University, P.O. Box 18735-138, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shahrzad Abdolmohammadi
  • Corresponding author
  • Department of Chemistry, East Tehran Branch, Islamic Azad University, P.O. Box 18735-138, Tehran, Iran, Tel.: +98-21-3359-4950, Fax: +98-21-3358-4011, E-mail:
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Reza Kia-Kojoori
  • Department of Chemistry, East Tehran Branch, Islamic Azad University, P.O. Box 18735-138, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-16 | DOI: https://doi.org/10.1515/znb-2018-0030


An efficient methodology dealing with the Fe3O4@TiO2 nanocomposite-catalyzed direct condensation reaction of 4-hydroxycoumarin, aromatic aldehydes, and 6-amino-1,3-dimethyluracil in aqueous media at room temperature is reported. This new process has been successfully applied to the synthesis of 6-amino-5-[(4-hydroxy-2-oxo-2H-chromen-3-yl)(aryl)methyl]-1,3-dimethyl-2,4,6(1H,3H)-pyrimidinediones in high to excellent yields within 2–3 h.

Keywords: aqueous media; aromatic aldehydes; eco-friendly protocol; Fe3O4@TiO2 nanocomposite; 4-hydroxycoumarin; magnetically reusable catalyst; pyrimidinediones


  • [1]

    C. O. Kappe, Tetrahedron 1993, 49, 6937.CrossrefGoogle Scholar

  • [2]

    G. C. Rovnyak, S. D. Kimball, B. Beyer, G. Cucinotta, J. D. DiMarco, J. Gougoutas, A. Hedberg, M. Malley, J. P. McCarthy, J. Med. Chem. 1995, 38, 119.CrossrefGoogle Scholar

  • [3]

    A. D. Patil, N. V. Kumar, W. C. Kokke, M. F. Bean, A. J. Freyer, C. De Brosse, S. Mai, A. Truneh, B. Carte, J. Org. Chem. 1995, 60, 1182.CrossrefGoogle Scholar

  • [4]

    L. Alvey, S. Prado, V. Huteau, B. Saint-Joanis, S. Michel, M. Koch, S. T. Cole, F. Tillequin, Y. L. Janin, Bioorg. Med. Chem. 2008, 16, 8264.CrossrefGoogle Scholar

  • [5]

    T. Symeonidis, M. Chamilos, D. J. Hadjipavlou-Litina, M. Kallitsakis, K. E. Litinas, Bioorg. Med. Chem. 2009, 19, 1139.CrossrefGoogle Scholar

  • [6]

    J. L. Wang, D. Liu, Z. J. Zhang, S. Shan, X. Han, S. M. Srinivasula, C. M. Croce, E. S. Alnemri, Z. Huang, Proc. Natl. Acad. Sci. USA 2000, 97, 7124.CrossrefGoogle Scholar

  • [7]

    F. Cheng, A. Ishikawa, Y. Ono, T. Arrheniusa, A. Nadzana, Bioorg. Med. Chem. Lett. 2003, 13, 3647.CrossrefGoogle Scholar

  • [8]

    D. Grée, S. Vorin, V. L. Manthati, F. Caijo, G. Viault, F. Manero, P. Juin, R. Grée, Tetrahedron Lett. 2008, 49, 3276.CrossrefGoogle Scholar

  • [9]

    W. Kemnitzer, S. Jiang, H. Zhang, S. Kasibhatla, C. Crogan-Grundy, C. Blais, G. Attardo, R. Denis, S. Lamothe, H. Gourdeau, B. Tseng, J. Drewe, X. Cai, Bioorg. Med. Chem. 2008, 18, 5571.CrossrefGoogle Scholar

  • [10]

    M. M. Khafagy, A. H. Abd el-Wahab, F. A. Eid, A. M. el-Agrody, Farmaco 2002, 57, 715.CrossrefGoogle Scholar

  • [11]

    K. Mazaahir, S. Shilpi, R. Khalilur, S. T. Sharanjit, Bioorg. Med. Chem. Lett. 2005, 15, 4295.CrossrefGoogle Scholar

  • [12]

    I. O. Donkor, C. L. Klein, L. Liang, N. Zhu, E. Bradley, A. M. Clark, J. Pharm. Sci. 1995, 84, 661.CrossrefGoogle Scholar

  • [13]

    R. R. Kumar, S. Perumal, P. Senthilkumar, P. Yogeeswari, D. Sriram, Bioorg. Med. Chem. Lett. 2007, 17, 6459.CrossrefGoogle Scholar

  • [14]

    V. K. Tandon, M. Vaish, S. Jain, D. S. Bhakuni, R. C. Srimal, Indian J. Pharm. Sci. 1991, 53, 22.Google Scholar

  • [15]

    M. Longobardi, A. Bargagna, E. Mariani, P. Schenone, S. Vitagliano, L. Stella, A. Di Sarno, E. Marmo, Farmaco 1990, 45, 399.Google Scholar

  • [16]

    A. H. Bedair, N. A. El-Hady, A. El-Latif, A. H. Fakery, A. M. El-Agrody, Farmaco 2000, 55, 708.CrossrefGoogle Scholar

  • [17]

    M. M. Heravi, K. Bakhtiari, V. Zadsirjan, F. F. Bamoharram, O. M. Heravi, Bioorg. Med. Chem. Lett. 2007, 17, 4262.CrossrefGoogle Scholar

  • [18]

    C. Burda, X. B. Chen, R. Narayanan, M. A. El-Sayed, Chem. Rev. 2005, 105, 1025.CrossrefGoogle Scholar

  • [19]

    A. Y. Kim, H. J. Lee, J. C. Park, H. Kang, H. Yang, H. Song, K. H. Park, Molecules 2009, 14, 5169.CrossrefGoogle Scholar

  • [20]

    K. S. Lin, C. Y. Pan, S. Chowdhury, M. T. Tu, W. T. Hong, C. T. Yeh, Molecules 2011, 16, 348.CrossrefGoogle Scholar

  • [21]

    A. Monopoli, A. Nacci, V. Caló, F. Ciminale, P. Cotugno, A. Mangone, L. C. Giannossa, P. Azzone, N. Cioffi, Molecules 2010, 15, 4511.CrossrefGoogle Scholar

  • [22]

    M. L. Kantam, S. Laha, J. Yadav, B. Sreedhar, Tetrahedron Lett. 2006, 47, 6213.CrossrefGoogle Scholar

  • [23]

    M. Hosseini-Sarvari, Acta Chim. Slov. 2007, 54, 354.Google Scholar

  • [24]

    J. L. Ropero-Vega, A. Aldana-Péreza, R. Gómez, M. E. Niño-Gómez, Appl. Catal. A 2010, 379, 24.CrossrefGoogle Scholar

  • [25]

    M. Z. Kassaee, R. Mohammadi, H. Masrouri, F. Movahedi, Chin. Chem. Lett. 2011, 22, 1203.Google Scholar

  • [26]

    F. Shirini, M. Alipour Khoshdel, M. Abedini, S. V. Atghia, Chin. Chem. Lett. 2011, 22, 1211.Google Scholar

  • [27]

    F. Shirini, S. V. Atghia, M. Alipour Khoshdel, Iran. J. Catal. 2011, 1, 93.Google Scholar

  • [28]

    S. Abdolmohammadi, Curr. Catal. 2013, 2, 116.CrossrefGoogle Scholar

  • [29]

    S. Abdolmohammadi, Chin. Chem. Lett. 2012, 23, 1003.CrossrefGoogle Scholar

  • [30]

    S. Abdolmohammadi, Chin. Chem. Lett. 2013, 24, 318.CrossrefGoogle Scholar

  • [31]

    S. Abdolmohammadi, M. Mohammadnejad, F. Shafaei, Z. Naturforsch. 2013, 68b, 362.Google Scholar

  • [32]

    J. Deng, L. P. Mo, F. Y. Zhao, L. L. Hou, L. Yang, Z. H. Zhang, Green Chem. 2011, 13, 2576.CrossrefGoogle Scholar

  • [33]

    Y. M. Huh, Y. W. Jun, H. T. Song, S. Kim, J. S. Choi, J. H. Lee, S. Yoon, K. S. Kim, J. S. Shin, J. S. Suh, J. Cheon, J. Am. Chem. Soc. 2005, 127, 12387.CrossrefGoogle Scholar

  • [34]

    P. Sharma, S. Rana, K. C. Barick, C. Kumar, H. G. Salunked, P. A. Hassan, New J. Chem. 2014, 38, 5500.CrossrefGoogle Scholar

  • [35]

    T. A. Gad Allah, S. Kato, S. Satokawa, T. Kojima, Solid State Sci. 2007, 9, 737.CrossrefGoogle Scholar

  • [36]

    M. Ahmadi Golsefidi, B. Sarkhosh, J. Iran. Chem. Soc. 2017, 14, 1089.CrossrefGoogle Scholar

  • [37]

    S. Salamat, H. Younesi, N. Bahramifar, RSC Adv. 2017, 7, 19391.CrossrefGoogle Scholar

  • [38]

    S. Abdolmohammadi, S. Balalaie, M. Barari, F. Rominger, Comb. Chem. High Throughput Screen. 2013, 16, 150.Google Scholar

  • [39]

    R. Bharti, T. Parvin, RSC Adv. 2015, 5, 66833.CrossrefGoogle Scholar

  • [40]

    R. Bharti, T. Parvin, Synth. Commun. 2015, 45, 1442.CrossrefGoogle Scholar

  • [41]

    H. Niu, Q. Wang, H. Liang, M. Chen, C. Mao, J. Song, S. Zhang, Y. Gao, C. Chen, Materials 2014, 7, 4034.CrossrefGoogle Scholar

  • [42]

    L. Tana, X. Zhang, Q. Liua, X. Jinga, J. Liua, D. Songa, S. Hua, L. Liub, J. Wang, Colloids Surf. A 2015, 469, 279.CrossrefGoogle Scholar

About the article

Received: 2018-02-08

Accepted: 2018-04-22

Published Online: 2018-06-16

Published in Print: 2018-08-28

Citation Information: Zeitschrift für Naturforschung B, Volume 73, Issue 8, Pages 545–551, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0030.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in