Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Volume 73, Issue 8

Issues

The 3D supramolecular architecture of copper(II) 6-methyl-2-pyridone-4-carboxylate: synthesis, structure, magnetic behavior and DFT studies

Ran Jing
  • Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an University, Yan’an 716000, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Long Tang
  • Corresponding author
  • Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an University, Yan’an 716000, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ XiangYang Hou
  • Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an University, Yan’an 716000, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiao Wang
  • Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an University, Yan’an 716000, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ JiJiang Wang
  • Corresponding author
  • Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an University, Yan’an 716000, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ping Ju
  • Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an University, Yan’an 716000, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-11 | DOI: https://doi.org/10.1515/znb-2018-0050

Abstract

The reaction of Cu(NO3)2·3H2O and 6-methyl-2-pyridone-4-carboxylic acid (Hhmpca) under hydrothermal condition produced a new copper(II) coordination polymer [Cu(hmpca)2(H2O)2]·4H2O (1), which has been characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis and single-crystal X-ray diffraction. The Cu(II) ions are linked by coordinating water molecule bridges to generate a polymeric chain, and adjacent chains are connected to form a layer structure through interchain N–H···O hydrogen bonding. Because of the strong hydrogen bonds of free water molecules, ladder-shaped water chains are produced. Further, the layers and the water chains are linked into a three-dimensional supramolecular structure through strong O–H···O hydrogen bonds. Magnetic susceptibility measurements have indicated that compound 1 shows antiferromagnetic interactions between the adjacent Cu(II) ions. Based on the crystal structure data, compound 1 was analyzed using hybrid density functional theory (DFT) methods at the B3LYP/6-31G(d) level, and a DFT-broken symmetry approach was applied to study the magnetic coupling behavior. The calculated exchange coupling constant J is in good agreement with the experimental data.

Keywords: copper(II); DFT studies; magnetic behavior; structure; 6-methyl-2-pyridone-4-carboxylate

References

  • [1]

    S. I. Noro, T. A. Kutagawa, T. Nakamura, Cryst. Growth Des. 2007, 7, 1205.CrossrefGoogle Scholar

  • [2]

    M. Du, C. P. Li, X. J. Zhao, CrystEngComm 2006, 8, 552.CrossrefGoogle Scholar

  • [3]

    S. Kitagawa, K. Uemura, Chem. Soc. Rev. 2005, 34, 109.CrossrefGoogle Scholar

  • [4]

    B. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629.CrossrefGoogle Scholar

  • [5]

    K. T. Holman, A. M. Pivovar, J. A. Swift, M. D. Ward, Acc. Chem. Res. 2001, 34, 107.CrossrefGoogle Scholar

  • [6]

    T. K. Maji, M. Ohba, S. Kitagawa, Inorg. Chem. 2005, 44, 9225.CrossrefGoogle Scholar

  • [7]

    Z. Li, M. Li, X. P. Zhou, T. Wu, D. Li, S. W. Ng, Cryst. Growth Des. 2007, 7, 1992.CrossrefGoogle Scholar

  • [8]

    X. Feng, J. L. Chen, L. Y. Wang, S. Y. Xie, S. Yang, S. Z. Huo, S. W. Ng, CrystEngComm 2014, 16, 1334.CrossrefGoogle Scholar

  • [9]

    A. Q. Tian, J. L. Chen, X. Feng, X. M. Lang, L. Y. Wang, Russ. J. Coord. Chem. 2014, 40, 925.CrossrefGoogle Scholar

  • [10]

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03 (revision C.02), Gaussian, Inc., Wallingford, CT, 2004.Google Scholar

  • [11]

    A. D. Becke, J. Chem. Phys. 1997, 107, 8554.CrossrefGoogle Scholar

  • [12]

    E. Ruiz, A. Rodríguez-Fortea, J. Tercero, T. Cauchy, C. Massobrio, J. Chem. Phys. 2005, 123, 074102.CrossrefGoogle Scholar

  • [13]

    G. M. Sheldrick, Sadabs, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Göttingen (Germany) 2008.Google Scholar

  • [14]

    G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3.Google Scholar

  • [15]

    G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.Google Scholar

  • [16]

    H. Effenberger, F. Pertlik, Z. Kristallogr. 1991, 194, 207.Google Scholar

  • [17]

    J. C. Bonner, M. E. Fisher, Phys. Rev. A 1964, 135, A640.CrossrefGoogle Scholar

  • [18]

    C. Beghidja, G. Rogez, J. Kortus, M. Wesolek, R. Welter, J. Am. Chem. Soc. 2006, 128, 3140.CrossrefGoogle Scholar

  • [19]

    L. Tang, F. Fu, J. J. Wang, L. J. Gao, D. D. Chao, Z. Wang, Polyhedron 2015, 88, 116.CrossrefGoogle Scholar

  • [20]

    A. Rodríguez-Fortea, P. Alemany, S. Alvarez, E. Ruiz, Inorg. Chem. 2001, 40, 5868.CrossrefGoogle Scholar

  • [21]

    M. Zbiri, S. Saha, C. Adhikary, S. Chaudhuri, C. Daul, S. Koner, Inorg. Chim. Acta 2006, 359, 1193.CrossrefGoogle Scholar

About the article

Received: 2018-03-15

Accepted: 2018-05-17

Published Online: 2018-06-11

Published in Print: 2018-08-28


Citation Information: Zeitschrift für Naturforschung B, Volume 73, Issue 8, Pages 565–570, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0050.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in