Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Ahead of print

Issues

Influence of high-energy ball milling and additives on the formation of sphere-like α-Al2O3 powder by high-temperature calcination

Sai Li
  • Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou 450001, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lingling Zhu
  • Corresponding author
  • Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou 450001, P.R. China
  • School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China, Fax: +86 371 67781590
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luoqiang Liu
  • School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Liugang Chen
  • School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hongxia Li
  • State Key Laboratory of Advanced Refractories of China, Sinosteel Luoyang Institute of Refractories Research Co., 43 Xiyuan Road, Luoyang, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chunhui Sun
  • School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-05 | DOI: https://doi.org/10.1515/znb-2018-0080

Abstract

In comparison with the typically worm-like α-Al2O3 powders formed from an unground Al(OH)3 precursor calcined at 1450°C, spherical α-Al2O3 powders with ~1 μm in size were prepared by the calcination of a ground Al(OH)3 precursor with 5 wt.% [NH4]+BF4 under the same calcination conditions. The influence of a high-energy ball milling pretreatment as well as of the additives on the morphological evolution of α-Al2O3 powders was studied using the commercial precursor Al(OH)3 as raw material. The results indicate that the morphology of α-Al2O3 powders is closely related to the morphology of the Al(OH)3 precursor and to the introduction of different additives. The refinement of the Al(OH)3 precursor in aggregate size and of the primary crystal size by high-energy ball milling has effectively suppressed the neck growth of α-Al2O3 grains. In contrast to the findings made previously with the introduction of 5 wt.% [NH4]+Cl, the morphology of the α-Al2O3 particles could be significantly improved from a ground Al(OH)3 precursor with the addition of 5 wt.% [NH4]+BF4, which resulted in the formation of spherical α-Al2O3 powders with 1 μm size at 1450°C.

Graphical Abstract

Keywords: high-energy ball milling; industrial Al(OH)3; spherical-like α-Al2O3; [NH4]+BF4− additive

References

  • [1]

    S. Kouno, H. Shimoda, T. Obana, Taikabutsu Overseas (J. Tech. Assoc. Refract., Jpn.) 2012, 32, 56.Google Scholar

  • [2]

    A. Shui, N. Uchida, K. Uematsu, Powder Technol. 2002, 127, 9.CrossrefGoogle Scholar

  • [3]

    M. Q. Cao, Q. Z. Yan, X. H. Li, Y. Y. Mi, Mater. Sci. Eng., A. 2014, 589, 97.CrossrefGoogle Scholar

  • [4]

    T. Q. Zhou, T. Chen, W. H. Jiang, J. M. Liu, X. J. Zhang, L. F. Miao, Adv. Mater. Res. 2015, 1104, 3.CrossrefGoogle Scholar

  • [5]

    R. Bharthasaradhi, L. C. Nehru, Phase Transit. 2016, 89, 77.CrossrefGoogle Scholar

  • [6]

    W. L. Suchanek, J. Am. Ceram. Soc. 2010, 93, 399.CrossrefGoogle Scholar

  • [7]

    A. Boumaza, A. Djelloul, F. Guerrab, Powder Technol. 2010, 201, 177.CrossrefGoogle Scholar

  • [8]

    P. Billik, M. Čaplovičová, L. Čaplovič, B. Horváthe, Ceram. Int. 2015, 41, 8742.CrossrefGoogle Scholar

  • [9]

    S. Lamouri, M. Hamidouche, N. Bouaouadja, H. Belhouchet, V. Garnier, G. Fantozzi, J. F. Trelkat, Bol. Soc. Esp. Ceram. Vidrio 2017, 56, 47.CrossrefGoogle Scholar

  • [10]

    L. D. Hafshejani, S. Tangsir, H. Koponen, J. Riikonen, T. Karhunen, U. Tapper, V. P. Lehto, H. Moazed, A. A. Naseri, A. Hooshmand, J. Jokiniemi, A. Bhatnagar, A. Lähde, Powder Technol. 2016, 298, 42.CrossrefGoogle Scholar

  • [11]

    V. Chaturvedi, P. V. Ananthapadmanabhan, Y. Chakravarthy, S. Bhandari, N. Tiwari, A. Pragatheeswaran, A. K. Das, Ceram. Int. 2014, 40, 8273.CrossrefGoogle Scholar

  • [12]

    M. I. Martin, M. E. Rabanal, L. S. Gomez, J. M. Torralba, O. Milosevic, J. Eur. Ceram. Soc. 2008, 28, 2487.CrossrefGoogle Scholar

  • [13]

    Y. Aman, C. Rossignol, V. Garnier, E. Djurado, J. Eur. Ceram. Soc. 2013, 33, 1917.CrossrefGoogle Scholar

  • [14]

    A. Tonejc, C. Kosanović, M. Stubićar, A. M. Toneje, B. Subotić, I. S̈mit, J. Alloys Compd. 1994, 204, L1.CrossrefGoogle Scholar

  • [15]

    A. Terzić, L. Andrić, V. Mitić, Ceram. Int. 2014, 40, 14851.CrossrefGoogle Scholar

  • [16]

    A. Tonejc, M. Stubićar, A. M. Tonejc, K. Kosanovi, B. Subotić, I. S̈mit, J. Mater. Sci. Lett. 1994, 13, 519.CrossrefGoogle Scholar

  • [17]

    L. L. Zhu, C. H. Sun, L. G. Chen, X. F. Lu, S. Li, G. T. Ye, L. Q. Liu, Z. Naturforsch. 2017, 72b, 665.Google Scholar

  • [18]

    L. L. Zhu, G. T. Ye, Q. H. Cheng, Y. Zhou, UNITECR 2013, 001092.Google Scholar

  • [19]

    D. Riello, C. Zetterström, C. Parr, M. A. L. Braulio, M. Moreira, J. B. Gallo, V. C. Pandolfelli, Ceram. Int. 2016, 42, 9804.CrossrefGoogle Scholar

  • [20]

    J. Li, Y. S. Wu, Y. B. Pan, W. B. Liu, J. K. Guo, Ceram. Int. 2007, 33, 919.CrossrefGoogle Scholar

  • [21]

    Z. Miao, J. G. Shi, W. P. Zhang, M. H. Zhang, China Pet. Process. Petrochem. Technol. 2016, 18, 19.Google Scholar

  • [22]

    W. Chen, Dissertation, Central South University, Hu Nan (in Chinese) 2010.Google Scholar

  • [23]

    X. H. Liu, CN201310515264.6, 2013 (patent in Chinese).Google Scholar

  • [24]

    C. T. Johnston, S. L. Wang, S. L. Hem, J. Pharm. Sci. 2002, 91, 1702.CrossrefGoogle Scholar

  • [25]

    S. W. Jang, H. Y. Lee, S. M. Lee, S. W. Lee, K. B. Shim, J. Mater. Sci. Lett. 2000, 19, 507.CrossrefGoogle Scholar

  • [26]

    T. Takamura, J. Koezuka, Nature 1965, 207, 965.Google Scholar

  • [27]

    R. L. Frost, J. T. Kloprogge, S. C. Russell, J. L. Szetu, Appl. Spectrosc. 1999, 53, 423.CrossrefGoogle Scholar

  • [28]

    L. Favaro, A. Boumaza, P. Roy, J. Lédion, G. Sattonnay, J. B. Brubach, A. M. Huntz, R. Tétot, J. Solid State Chem. 2010, 183, 901.CrossrefGoogle Scholar

  • [29]

    L. Erdey, S. Gal, G. Liptay, Talanta 1964, 11, 913.CrossrefGoogle Scholar

  • [30]

    B. R. Strohmeier, Appl. Surf. Sci. 1989, 40, 249.CrossrefGoogle Scholar

  • [31]

    M. Cable, M. H. V. Fernandes, Phys. Chem. Glasses 1998, 39, 228.Google Scholar

  • [32]

    L. Zoli, P. Galizia, L. Silvestroni, D. Sciti, J. Am. Ceram. Soc. 2018, 101, 2627.CrossrefGoogle Scholar

About the article

Received: 2018-04-28

Accepted: 2018-06-06

Published Online: 2018-07-05


Citation Information: Zeitschrift für Naturforschung B, 20180080, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0080.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in