Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year

IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

See all formats and pricing
More options …
Ahead of print


1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA

Marian Hebenbrock
  • Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jens Müller
  • Corresponding author
  • Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany, Phone: +49 251 83 36006
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-11 | DOI: https://doi.org/10.1515/znb-2018-0089


Two new cationic DNA intercalators, 3-phenyl-1-(6-phenylpyridin-2-yl)-1H-[1,2,4]triazolo[4,3-a]pyridin-4-ium (1a)+ and 1-phenyl-3-(6-phenylpyridin-2-yl)-3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium (1b)+, were synthesized from 2-chloropyridine and 2-chloroquinoline, respectively, in a four-step procedure. Generation of the hydrazine, followed by condensation with an aldehyde to give a hydrazone and subsequent Buchwald-Hartwig amination gave a mixture of E- and Z-configured N,N-functionalized hydrazones. Finally, oxidative cyclisation gave rise to the formation of the cationic DNA intercalators, whose molecular structures were determined by single-crystal X-ray diffraction analysis of the hexafluorophosphate and tribromide salt of (1a)+ and (1b)+, respectively. The intercalative binding of (1a)PF6 and (1b)PF6 to ctDNA was confirmed by means of UV, CD and luminescence spectroscopy, determination of the DNA melting temperature and by rheology measurements.

Graphical Abstract

Keywords: DNA; intercalator

Dedicated to: Professor Werner Uhl on the occasion of his 65th birthday.


  • [1]

    A. A. Almaqwashi, T. Paramanathan, I. Rouzina, M. C. Williams, Nucleic Acids Res. 2016, 44, 3971.CrossrefGoogle Scholar

  • [2]

    L. S. Lerman, J. Mol. Biol. 1961, 3, 18.CrossrefGoogle Scholar

  • [3]

    K. W. Jennette, S. J. Lippard, G. A. Vassiliades, W. R. Bauer, Proc. Natl. Acad. Sci. USA 1974, 71, 3839.CrossrefGoogle Scholar

  • [4]

    B. M. Zeglis, V. C. Pierre, J. K. Barton, Chem. Commun. 2007, 4565.Google Scholar

  • [5]

    A. S. Biebricher, I. Heller, R. F. H. Roijmans, T. P. Hoekstra, E. J. G. Peterman, G. J. L. Wuite, Nat. Commun. 2015, 6, 7304.CrossrefGoogle Scholar

  • [6]

    M. R. Gill, S. N. Harun, S. Halder, R. A. Boghozian, K. Ramadan, H. Ahmad, K. A. Vallis, Sci. Rep. 2016, 6, 31973.CrossrefGoogle Scholar

  • [7]

    N. W. Luedtke, J. S. Hwang, E. Nava, D. Gut, M. Kol, Y. Tor, Nucleic Acids Res. 2003, 31, 5732.CrossrefGoogle Scholar

  • [8]

    L.-M. Tumir, M. Radić Stojković, I. Piantanida, Beilstein J. Org. Chem. 2014, 10, 2930.CrossrefGoogle Scholar

  • [9]

    N. W. Luedtke, Q. Liu, Y. Tor, Chem. Eur. J. 2005, 11, 495.CrossrefGoogle Scholar

  • [10]

    A. Schmidt, M. Baune, A. Hepp, J. Kösters, J. Müller, Z. Naturforsch. 2016, 71b, 527.Google Scholar

  • [11]

    F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 1987, 2, S1.Google Scholar

  • [12]

    E. Subramanian, J. Trotter, C. E. Bugg, J. Cryst. Mol. Struct. 1971, 1, 3.CrossrefGoogle Scholar

  • [13]

    M. Vorlíčková, I. Kejnovská, K. Bednářová, D. Renčiuk, J. Kypr, Chirality 2012, 24, 691.CrossrefGoogle Scholar

  • [14]

    M. Hebenbrock, G. González-Abradelo, C. A. Strassert, J. Müller, Z. Anorg. Allg. Chem. 2018, 644, 671.CrossrefGoogle Scholar

  • [15]

    N. C. Garbett, P. A. Ragazzon, J. B. Chaires, Nat. Protoc. 2007, 2, 3166.CrossrefGoogle Scholar

  • [16]

    D. M. Crothers, Biopolymers 1968, 6, 575.CrossrefGoogle Scholar

  • [17]

    C. V. Kumar, R. S. Turner, E. H. Asuncion, J. Photochem. Photobiol. A 1993, 74, 231.CrossrefGoogle Scholar

  • [18]

    C. A. M. Seidel, A. Schulz, M. H. M. Sauer, J. Phys. Chem. 1996, 100, 5541.CrossrefGoogle Scholar

  • [19]

    N. M. Gandikota, R. S. Bolla, I. V. K. Viswanath, S. Bethi, Asian J. Chem. 2017, 29, 1920.CrossrefGoogle Scholar

  • [20]

    D. G. Calatayud, E. López-Torres, M. A. Mendiola, Eur. J. Inorg. Chem. 2013, 2013, 80.CrossrefGoogle Scholar

  • [21]

    E. L. Romero, R. F. D’Vries, F. Zuluaga, M. N. Chaur, J. Braz. Chem. Soc. 2015, 26, 1265.Google Scholar

  • [22]

    S. M. Landge, E. Tkatchouk, D. Benítez, D. A. Lanfranchi, M. Elhabiri, W. A. Goddard III, I. Aprahamian, J. Am. Chem. Soc. 2011, 133, 9812.CrossrefGoogle Scholar

  • [23]

    G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.Google Scholar

About the article

Received: 2018-05-11

Accepted: 2018-05-13

Published Online: 2018-08-11

Citation Information: Zeitschrift für Naturforschung B, 20180089, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0089.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in