Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Volume 73, Issue 11

Issues

Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)

Sebastian Stein
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lukas Heletta
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rainer Pöttgen
  • Corresponding author
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-04 | DOI: https://doi.org/10.1515/znb-2018-0091

Abstract

The ternary rare earth transition metal-indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir) were obtained from high-temperature reactions in sealed niobium ampoules. These indides adopt a hexagonal structure of the Lu3Co1.87In4 type (space group P6̅), a ternary ordered superstructure of the aristotype Fe2P. The structures of three different compounds were refined from single-crystal X-ray diffractometer data: a=768.20(6), c=381.97(3) pm, 1441 F2 values, 24 parameters, wR2=0.0338 (Ho3Pd1.90In4); a=774.98(3), c=378.51(2) pm, 577 F2 values, 23 parameters, wR2=0.0742 (Ho3Ir1.69In4.31) and a=780.3(1), c=369.4(1) pm, 573 F2 values, 22 parameters, wR2=0.0403 (Tm3Ir1.51In4.49). Refinements of the occupancies revealed homogeneity ranges in case of the iridium-based crystals resulting from Ir/In mixing. The refined composition of the palladium compound was Ho3Pd1.90In4 resulting from defects on the Wyckoff position 1d, which was already reported for the prototype Lu3Co1.87In4. The geometrical motifs of the RE3T2In4 structures are three different types of tricapped trigonal prisms around the transition metal and indium atoms which are condensed via common edges and triangular faces. Temperature dependent magnetic susceptibility measurements of Dy3Ir2In4 and Tm3Ir2In4 showed Curie-Weiss behavior and the experimental magnetic moments of 10.59(2) μB (Dy3Ir2In4) and 7.40(2) μB (Tm3Ir2In4) confirming stable trivalent RE3+ states. Dy3Ir2In4 and Tm3Ir2In4 order antiferromagnetically with Néel temperatures of TN=13.6(5) and 5.4(5) K, respectively.

Keywords: crystal structure; indium intermetallics; magnetic properties; rare earth compounds

Dedicated to:

Professor Bernt Krebs on the occasion of his 80th birthday.

References

  • [1]

    S. Rundqvist, F. Jellinek, Acta Chem. Scand. 1959, 13, 425.CrossrefGoogle Scholar

  • [2]

    P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2017/18), ASM International®, Materials Park, Ohio (USA) 2017.Google Scholar

  • [3]

    E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edition, Springer, Berlin, 1993.Google Scholar

  • [4]

    E. Parthé, L. M. Gelato, Acta Crystallogr. 1984, A40, 169.Google Scholar

  • [5]

    L. M. Gelato, E. Parthé, J. Appl. Crystallogr. 1987, 20, 139.CrossrefGoogle Scholar

  • [6]

    P. I. Krypyakevich, V. Ya. Markiv, E. V. Melnyk, Dopov. Akad. Nauk. Ukr. RSR, Ser. A, 1967, 750.Google Scholar

  • [7]

    A. E. Dwight, M. H. Mueller, R. A. Conner, Jr., J. W. Downey, H. Knott, Trans. Met. Soc. AIME 1968, 242, 2075.Google Scholar

  • [8]

    M. F. Zumdick, R.-D. Hoffmann, R. Pöttgen, Z. Naturforsch. 1999, 54b, 45.Google Scholar

  • [9]

    A. Szytuła, J. Leciejewicz, Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics. CRC Press, Boca Raton, Florida, 1994.Google Scholar

  • [10]

    R. Pöttgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289.Google Scholar

  • [11]

    S. Gupta, K. G. Suresh, J. Alloys Compd. 2015, 618, 562.CrossrefGoogle Scholar

  • [12]

    W. Jeitschko, Acta Crystallogr. B 1970, 26, 815.CrossrefGoogle Scholar

  • [13]

    M. F. Zumdick, R. Pöttgen, Z. Kristallogr. 1999, 214, 90.Google Scholar

  • [14]

    V. Ja. Markiv, N. N. Beljavina, A. A. L’isenko, A. A. Babenko, Dopov. Akad. Nauk Ukr. RSR, Ser. B 1983, 34.Google Scholar

  • [15]

    V. I. Zaremba, Y. M. Kalychak, P. Y. Zavalii, A. N. Sobolev, Dopov. Akad. Nauk Ukr. RSR, Ser. B 1989, 37.Google Scholar

  • [16]

    M. Lukachuk, V. I. Zaremba, R.-D. Hoffmann, R. Pöttgen, Z. Naturforsch. 2004, 59b, 182.Google Scholar

  • [17]

    U. Ch. Rodewald, M. Lukachuk, R.-D. Hoffmann, R. Pöttgen, Monatsh. Chem. 2005, 136, 1985.CrossrefGoogle Scholar

  • [18]

    B. Heying, O. Niehaus, U. Ch. Rodewald, R. Pöttgen, Z. Naturforsch. 2016, 71b, 1261.Google Scholar

  • [19]

    R. Pöttgen, Th. Gulden, A. Simon, GIT Labor-Fachzeitschrift 1999, 43, 133.Google Scholar

  • [20]

    D. Kußmann, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 1998, 624, 1727.CrossrefGoogle Scholar

  • [21]

    Y. B. Kuz´ma, V. Ya. Markiv, Kristallografiya 1964, 9, 279.Google Scholar

  • [22]

    I. R. Harris, G. V. Raynor, J. Less-Common Met. 1965, 9, 7.CrossrefGoogle Scholar

  • [23]

    J. L. Moriarty Jr., J. E. Humphreys, R. O. Gordon, N. C. Baenziger, Acta Crystallogr. 1966, 21, 840.CrossrefGoogle Scholar

  • [24]

    S. P. Yatsenko, A. A. Semyannokov, K. O. Shakarov, E. G. Fedorova, J. Less-Common Met. 1983, 90, 95.CrossrefGoogle Scholar

  • [25]

    K. H. J. Buschow, H. W. de Wijn, A. M. Diepen, J. Chem. Phys. 1969, 50, 137.CrossrefGoogle Scholar

  • [26]

    N. Nereson, G. Arnold, J. Chem. Phys. 1970, 53, 2818.CrossrefGoogle Scholar

  • [27]

    G. Arnold, N. Nereson, J. Chem. Phys. 1969, 51, 1495.CrossrefGoogle Scholar

  • [28]

    V. B. Compton, B. T. Matthias, Acta Crystallogr. 1959, 12, 651.CrossrefGoogle Scholar

  • [29]

    R. Ferro, R. Marazza, G. Rambaldi, Z. Metallkd. 1974, 65, 37.Google Scholar

  • [30]

    V. I. Zaremba, U. Ch. Rodewald, R. Pöttgen, Z. Anorg. Allg. Chem. 2005, 631, 1065.CrossrefGoogle Scholar

  • [31]

    N. Zaremba, I. Muts, V. Hlukhyy, S. Stein, U. Ch. Rodewald, V. Pavlyuk, R. Pöttgen, V. Zaremba, Z. Naturforsch. 2017, 72b, 631.Google Scholar

  • [32]

    K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73.CrossrefGoogle Scholar

  • [33]

    V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.Google Scholar

  • [34]

    L. Palatinus, Acta Crystallogr. 2013, B69, 1.Google Scholar

  • [35]

    L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786.CrossrefGoogle Scholar

  • [36]

    R. Herbst-Irmer, Z. Kristallogr. 2016, 231, 573.Google Scholar

  • [37]

    H. D. Flack, G. Bernadinelli, Acta Crystallogr. 1999, A55, 908.Google Scholar

  • [38]

    H. D. Flack, G. Bernadinelli, J. Appl. Crystallogr. 2000, 33, 1143.CrossrefGoogle Scholar

  • [39]

    S. Parsons, H. D. Flack, T. Wagner, Acta Crystallogr. 2013, B69, 249.Google Scholar

  • [40]

    J. Emsley, The Elements, Oxford University Press, Oxford, 1999.Google Scholar

  • [41]

    R.-D. Hoffmann, U. Ch. Rodewald, R. Pöttgen, Z. Naturforsch. 1999, 54b, 38.Google Scholar

  • [42]

    R.-D. Hoffmann, R. Pöttgen, V. I. Zaremba, Ya. M. Kalychak, Z. Naturforsch. 2000, 55b, 834.Google Scholar

  • [43]

    J. Donohue, The Structures of the Elements, Wiley, New York, 1974.Google Scholar

  • [44]

    H. Lueken, Magnetochemie, Teubner, Stuttgart, 1999.Google Scholar

About the article

Received: 2018-05-17

Accepted: 2018-06-23

Published Online: 2018-07-04

Published in Print: 2018-11-27


Citation Information: Zeitschrift für Naturforschung B, Volume 73, Issue 11, Pages 765–772, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0091.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in