Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Ahead of print

Issues

Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state

Aleksej Jochim
  • Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Näther
  • Corresponding author
  • Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany, Fax: +49-431-8801520
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-08 | DOI: https://doi.org/10.1515/znb-2018-0104

Abstract

Reaction of Mn(NCS)2 with pyrazole leads to the formation of three compounds with the compositions Mn(NCS)2(pyrazole)4 (1), [Mn(NCS)2]2(pyrazole)6 (2) and Mn(NCS)2(pyrazole)2 (3). Compound 1, already reported in the literature, consists of discrete complexes, in which the Mn(II) cations are octahedrally coordinated by four pyrazole ligands and two terminally N-bonded thiocyanate anions. In compound 2 each of the two Mn(II) cations are coordinated octahedrally by three pyrazole ligands and one terminal as well as two bridging thiocyanate anions, which link the metal cations into dimers. In compound 3 also octahedrally coordinated Mn(II) cations are present but they are linked into chains via centrosymmetric pairs of μ-1,3-bridging thiocyanate anions. Upon heating compound 1 loses the pyrazole co-ligands stepwise and is transformed into the chain compound 3 via the dimer 2 that is formed as an intermediate. Magnetic measurements on compounds 2 and 3 reveal dominating antiferromagnetic interactions, as already observed for 1D Mn(NCS)2 coordination compounds with pyridine based co-ligands.

Graphical Abstract

Keywords: crystal structures; magnetic properties; Mn coordination compounds; pyrazole; thermal properties; thiocyanate ligands

Dedicated to: Professor Bernt Krebs on the occasion of his 80th birthday.

References

  • [1]

    F. A. Mautner, R. C. Fischer, L. G. Rashmawi, F. R. Louka, S. S. Massoud, Polyhedron 2017, 124, 237.CrossrefGoogle Scholar

  • [2]

    F. A. Mautner, M. Scherzer, C. Berger, R. C. Fischer, R. Vicente, S. S. Massoud, Polyhedron 2015, 85, 20.CrossrefGoogle Scholar

  • [3]

    R. Uhrecký, I. Ondrejkovičová, D. Lacková, Z. Fáberová, J. Mroziński, B. Kalińska, Z. Padělková, M. Koman, Inorg. Chim. Acta 2014, 414, 33.CrossrefGoogle Scholar

  • [4]

    Y. P. Prananto, A. Urbatsch, B. Moubaraki, K. S. Murray, D. R. Turner, G. B. Deacon, R. Batten Stuart, Aust. J. Chem. 2017, 70, 516.CrossrefGoogle Scholar

  • [5]

    J. G. Małecki, T. Groń, H. Duda, Polyhedron 2012, 36, 56.CrossrefGoogle Scholar

  • [6]

    S. Suckert, L. Germann, R. Dinnebier, J. Werner, C. Näther, Crystals 2016, 6, 38.CrossrefGoogle Scholar

  • [7]

    S. S. Massoud, M. Dubin, A. E. Guilbeau, M. Spell, R. Vicente, P. Wilfling, R. C. Fischer, F. A. Mautner, Polyhedron 2014, 78, 135.CrossrefGoogle Scholar

  • [8]

    G. A. Bowmaker, C. Pakawatchai, S. Saithong, B. W. Skelton, A. H. White, Dalton Trans. 2009, 2588.Google Scholar

  • [9]

    E. Lee, J. Seo, S. S. Lee, K.-M. Park, Cryst. Growth Des. 2012, 12, 3834.CrossrefGoogle Scholar

  • [10]

    A. V. Godoy Netto, R. C. G. Frem, A. E. Mauro, E. T. de Almeida, A. M. Santana, J. de Souza, R. H. A. Santos, Inorg. Chim. Acta 2003, 350, 252.CrossrefGoogle Scholar

  • [11]

    K. Ha, Acta Crystallogr. 2012, E68, m144.Google Scholar

  • [12]

    S. Kishi, M. Kato, Inorg. Chem. 2003, 42, 8728.CrossrefGoogle Scholar

  • [13]

    K. Ha, Z. Kristallogr. – New Cryst. Struct. 2013, 228, 313.Google Scholar

  • [14]

    F. A. Mautner, C. Berger, R. C. Fischer, S. S. Massoud, Inorg. Chim. Acta 2016, 448, 34.CrossrefGoogle Scholar

  • [15]

    M. Maiti, S. Thakurta, D. Sadhukhan, G. Pilet, G. M. Rosair, A. Nonat, L. J. Charbonnière, S. Mitra, Polyhedron 2013, 65, 6.CrossrefGoogle Scholar

  • [16]

    S. Das, K. Bhar, S. Chattopadhyay, P. Mitra, V. J. Smith, L. J. Barbour, B. K. Ghosh, Polyhedron 2012, 38, 26.CrossrefGoogle Scholar

  • [17]

    S. Suckert, M. Rams, M. M. Rams, C. Näther, Inorg. Chem. 2017, 56, 8007.CrossrefGoogle Scholar

  • [18]

    S. Suckert, M. Rams, L. Germann, D. M. Cegiełka, R. E. Dinnebier, C. Näther, Cryst. Growth Des. 2017, 17, 3997.CrossrefGoogle Scholar

  • [19]

    S. Suckert, I. Jess, C. Näther, Z. Anorg. Allg. Chem. 2017, 643, 721.CrossrefGoogle Scholar

  • [20]

    D. A. Buckingham, Coord. Chem. Rev. 1994, 135, 587.Google Scholar

  • [21]

    C. Bartual-Murgui, L. Piñeiro-López, F. J. Valverde-Muñoz, M. C. Muñoz, M. Seredyuk, J. A. Real, Inorg. Chem. 2017, 56, 13535.CrossrefGoogle Scholar

  • [22]

    J. Werner, M. Rams, Z. Tomkowicz, T. Runčevski, R. E. Dinnebier, S. Suckert, C. Näther, Inorg. Chem. 2015, 54, 2893.CrossrefGoogle Scholar

  • [23]

    J. Werner, T. Runčevski, R. Dinnebier, S. G. Ebbinghaus, S. Suckert, C. Näther, Eur. J. Inorg. Chem. 2015, 3236.Google Scholar

  • [24]

    T. Neumann, M. Ceglarska, M. Rams, L. S. Germann, R. E. Dinnebier, S. Suckert, I. Jess, C. Näther, Inorg. Chem. 2018, 57, 3305.CrossrefGoogle Scholar

  • [25]

    C. D. Mekuimemba, F. Conan, A. J. Mota, M. A. Palacios, E. Colacio, S. Triki, Inorg. Chem. 2018, 57, 2184.CrossrefGoogle Scholar

  • [26]

    A. R. Nassief, M. Abdel-Hafiez, A. Hassen, A. S. G. Khalil, M. R. Saber, J. Magn. Magn. Mater. 2018, 452, 488.CrossrefGoogle Scholar

  • [27]

    A. Das, K. Bhattacharya, S. Giri, A. Ghosh, Polyhedron 2017, 134, 295.CrossrefGoogle Scholar

  • [28]

    J. L. Guillet, I. Bhowmick, M. P. Shores, C. J. A. Daley, M. Gembicky, J. A. Golen, A. L. Rheingold, L. H. Doerrer, Inorg. Chem. 2016, 55, 8099.CrossrefGoogle Scholar

  • [29]

    E. Shurdha, C. E. Moore, A. L. Rheingold, S. H. Lapidus, P. W. Stephens, A. M. Arif, J. S. Miller, Inorg. Chem. 2013, 52, 10583.CrossrefGoogle Scholar

  • [30]

    E. Shurdha, S. H. Lapidus, P. W. Stephens, C. E. Moore, A. L. Rheingold, J. S. Miller, Inorg. Chem. 2012, 51, 9655.CrossrefGoogle Scholar

  • [31]

    R. González, A. Acosta, R. Chiozzone, C. Kremer, D. Armentano, G. De Munno, M. Julve, F. Lloret, J. Faus, Inorg. Chem. 2012, 51, 5737.CrossrefGoogle Scholar

  • [32]

    J. Palion-Gazda, B. Machura, F. Lloret, M. Julve, Cryst. Growth Des. 2015, 15, 2380.CrossrefGoogle Scholar

  • [33]

    C. Wellm, M. Rams, T. Neumann, M. Ceglarska, C. Näther, Cryst. Growth Des. 2018, 18, 3117.CrossrefGoogle Scholar

  • [34]

    S. Suckert, M. Rams, M. Böhme, L. S. Germann, R. E. Dinnebier, W. Plass, J. Werner, C. Näther, Dalton Trans. 2016, 45, 18190.CrossrefGoogle Scholar

  • [35]

    O. V. Nesterova, S. R. Petrusenko, V. N. Kokozay, B. W. Skelton, J. Jezierska, W. Linert, A. Ozarowski, Dalton Trans. 2008, 1431.Google Scholar

  • [36]

    S. Banerjee, M. G. B. Drew, C.-Z. Lu, J. Tercero, C. Diaz, A. Ghosh, Eur. J. Inorg. Chem. 2005, 2005, 2376.CrossrefGoogle Scholar

  • [37]

    J. Werner, Z. Tomkowicz, T. Reinert, C. Näther, Eur. J. Inorg. Chem. 2015, 3066.Google Scholar

  • [38]

    M. Mousavi, V. Bereau, C. Duhayon, P. Guionneau, J.-P. Sutter, Chem. Commun. 2012, 48, 10028.CrossrefGoogle Scholar

  • [39]

    A. Switlicka, K. Czerwinska, B. Machura, M. Penkala, A. Bienko, D. Bienko, W. Zierkiewicz, CrystEngComm. 2016, 18, 9042.CrossrefGoogle Scholar

  • [40]

    S. Petrosyants, Z. Dobrokhotova, A. Ilyukhin, N. Efimov, Y. Mikhlina, V. Novotortsev, Inorg. Chim. Acta 2015, 434, 41.CrossrefGoogle Scholar

  • [41]

    S. P. Petrosyants, Z. V. Dobrokhotova, A. B. Ilyukhin, N. N. Efimov, A. V. Gavrikov, P. N. Vasilyev, V. M. Novotortsev, Eur. J. Inorg. Chem. 2017, 2017, 3561.CrossrefGoogle Scholar

  • [42]

    S. Wöhlert, T. Fic, Z. Tomkowicz, S. G. Ebbinghaus, M. Rams, W. Haase, C. Näther, Inorg. Chem. 2013, 52, 12947.CrossrefGoogle Scholar

  • [43]

    S. Wöhlert, Z. Tomkowicz, M. Rams, S. G. Ebbinghaus, L. Fink, M. U. Schmidt, C. Näther, Inorg. Chem. 2014, 53, 8298.CrossrefGoogle Scholar

  • [44]

    C. Näther, S. Wöhlert, J. Boeckmann, M. Wriedt, I. Jeß, Z. Anorg. Allg. Chem. 2013, 639, 2696.CrossrefGoogle Scholar

  • [45]

    S. Wöhlert, T. Runčevski, R. E. Dinnebier, S. G. Ebbinghaus, C. Näther, Cryst. Growth Des. 2014, 14, 1902.CrossrefGoogle Scholar

  • [46]

    S. Wöhlert, U. Ruschewitz, C. Näther, Cryst. Growth Des. 2012, 12, 2715.CrossrefGoogle Scholar

  • [47]

    M. Rams, M. Böhme, V. Kataev, Y. Krupskaya, B. Büchner, W. Plass, T. Neumann, Z. Tomkowicz, C. Näther, Phys. Chem. Chem. Phys. 2017, 19, 24534.CrossrefGoogle Scholar

  • [48]

    M. Rams, Z. Tomkowicz, M. Böhme, W. Plass, S. Suckert, J. Werner, I. Jess, C. Näther, Phys. Chem. Chem. Phys. 2017, 19, 3232.CrossrefGoogle Scholar

  • [49]

    K. Müller-Buschbaum, Z. Anorg. Allg. Chem. 2005, 631, 811.CrossrefGoogle Scholar

  • [50]

    S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed, D. C. Waddell, Chem. Soc. Rev. 2012, 41, 413.CrossrefGoogle Scholar

  • [51]

    D. Braga, S. L. Giaffreda, F. Grepioni, A. Pettersen, L. Maini, M. Curzi, M. Polito, Dalton Trans. 2006, 1249.Google Scholar

  • [52]

    C. J. Adams, P. C. Crawford, A. G. Orpen, T. J. Podesta, B. Salt, Chem. Comm. 2005, 2457.Google Scholar

  • [53]

    S. Suckert, S. Wöhlert, C. Näther, Z. Naturforsch. 2016, 71b, 381.Google Scholar

  • [54]

    S. Suckert, H. Terraschke, H. Reinsch, C. Näther, Inorg. Chim. Acta 2017, 461, 290.CrossrefGoogle Scholar

  • [55]

    S. Wöhlert, T. Runčevski, R. E. Dinnebier, C. Näther, Z. Anorg. Allg. Chem. 2013, 639, 2648.CrossrefGoogle Scholar

  • [56]

    P. Lumme, I. Mutikainen, E. Lindell, Inorg. Chim. Acta 1983, 71, 217.CrossrefGoogle Scholar

  • [57]

    P. M. Takahashi, L. P. Melo, R. C. G. Frem, A. V. G. Netto, A. E. Mauro, R. H. A. Santos, J. G. Ferreira, J. Mol. Struct. 2006, 783, 161.CrossrefGoogle Scholar

  • [58]

    H. Yan, Acta Crystallogr. 2007, E63, m2602.Google Scholar

  • [59]

    P. B. da Silva, R. C. G. Frem, A. V. G. Netto, A. E. Mauro, J. G. Ferreira, R. H. A. Santos, Inorg. Chem. Commun. 2006, 9, 235.CrossrefGoogle Scholar

  • [60]

    K. Robinson, G. V. Gibbs, P. H. Ribbe, Science 1971, 172, 567.CrossrefGoogle Scholar

  • [61]

    K. Al-Farhan, B. Beagley, O. El-Sayrafi, G. A. Gott, C. A. McAuliffe, P. P. M. Rory, R. G. Pritchard, J. Chem. Soc. Dalton Trans. 1990, 1243.Google Scholar

  • [62]

    Y. Jin, Y.-X. Che, J.-M. Zheng, J. Coord. Chem. 2007, 60, 2067.CrossrefGoogle Scholar

  • [63]

    G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.Google Scholar

  • [64]

    G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.Google Scholar

  • [65]

    X-Red (version 1.11), Program for Data Reduction and Absorption Correction, STOE & Cie GmbH, Darmstadt (Germany) 1998.Google Scholar

  • [66]

    X-Shape (version 1.03), Program for the Crystal Optimization for Numerical Absorption Correction, STOE & Cie GmbH, Darmstadt (Germany) 1998.Google Scholar

  • [67]

    X-Area (version 1.44), Program Package for Single Crystal Measurements, STOE & Cie GmbH, Darmstadt (Germany) 2008.Google Scholar

About the article

Received: 2018-05-23

Accepted: 2018-07-21

Published Online: 2018-08-08


Citation Information: Zeitschrift für Naturforschung B, 20180104, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0104.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in