Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Ahead of print

Issues

An unexpected lanthanum chloride carbonate hydrate: synthesis, crystal structure, vibrational spectra and thermal degradation of LaCl[CO3]·3H2O

Olaf Reckeweg
  • Corresponding author
  • Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, Fax: +49-711-6856-4241
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Falk Lissner
  • Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Björn Blaschkowski
  • Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Armin Schulz
  • Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Schleid
  • Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-04 | DOI: https://doi.org/10.1515/znb-2018-0111

Abstract

Microcrystalline powders of LaCl[CO3]·3H2O were precipitated and isolated from stoichiometric aqueous solutions of LaCl3·7H2O and Na2[CO3]·10H2O. This confirmed the surprising emergence of corresponding single crystals during a reaction of equimolar aqueous solutions of LaCl3·7H2O and Na[N3] under ambient conditions by the uptake of atmospheric CO2. According to the X-ray structure analysis of colorless, transparent and rectangular single-crystals, LaCl[CO3]·3H2O adopts an orthorhombic structure, space group Pbca with the unit-cell parameters a=856.82(5), b=1598.57(9) and c=967.68(6) pm for Z=8. The tenfold coordination polyhedron around La3+ consists of two monodentate as well as two bidentate [CO3]2− anions together with three oxygen atoms from coordinating water molecules and one chloride anion. According to DSC/TG studies and X-ray powder diffraction, LaCl[CO3]·3H2O loses first its water and then carbon dioxide under thermal treatment up to 900°C to leave LaOCl behind. Vibrational infrared and Raman spectra confirmed the presence of H2O and [CO3]2− in LaCl[CO3]·3H2O and its stepwise degradation at elevated temperatures.

Graphical Abstract

Keywords: carbonate; chloride; crystal structure; hydrate; lanthanum; vibrational spectra

Dedicated to:

Professor Hans-Jürgen Meyer on the occasion of his 60th birthday.

References

  • [1]

    F. A. Mautner, H. Krischner, H. P. Fritzer, J. Mol. Struct. 1989, 213, 169.CrossrefGoogle Scholar

  • [2]

    Nonius Kappa-CCD Software, Nonius BV, Delft (The Netherlands) 1997.Google Scholar

  • [3]

    W. Herrendorf, H. Bärnighausen, Habitus, Karlsruhe (Germany) 1993, Gießen (Germany) 1996; implemented in the program X-Shape, Crystal Optimization Program for Numerical Absorption Correction, Fa. Stoe, Darmstadt (Germany).Google Scholar

  • [4]

    G. M. Sheldrick, Shelxs-97, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen (Germany) 1997.Google Scholar

  • [5]

    G. M. Sheldrick, Shelxl-97, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen (Germany) 1997.Google Scholar

  • [6]

    G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.Google Scholar

  • [7]

    L. H. Brixner, E. P. Moore, Acta Crystallogr. 1983, C39, 1316.Google Scholar

  • [8]

    J. Weidlein, U. Müller, K. Dehnicke, Schwingungsspektroskopie, 2. Auflage, Georg-Thieme-Verlag, Stuttgart, New York, 1988, p. 108.Google Scholar

  • [9]

    C. K. Huang, P. F. Kerr, Am. Mineral. 1960, 45, 311.Google Scholar

  • [10]

    J. Leciejewicz, Acta Crystallogr. 1961, 14, 1304.CrossrefGoogle Scholar

  • [11]

    D. B. Shinn, H. A. Eick, Inorg. Chem. 1968, 7, 1340.CrossrefGoogle Scholar

  • [12]

    A. dal Negro, G. Rossi, V. Tazzoli, Am. Mineral. 1975, 60, 280.Google Scholar

  • [13]

    J. Glaser, H.-J. Meyer, Z. Anorg. Allg. Chem. 2010, 636, 2622.CrossrefGoogle Scholar

  • [14]

    G. Reuter, G. Frenzen, Acta Crystallogr. 1994, C50, 844.Google Scholar

  • [15]

    A. Habenschuss, F. H. Spedding, Cryst. Struct. Commun. 1979, 8, 511.Google Scholar

  • [16]

    S. Bhagavantum, T. Venkkatarayudu, Proc. Indian Acad. Sci. 1939, 9 A, 224.Google Scholar

  • [17]

    W. Sterzel, W.-D. Schnee, Z. Anorg. Allg. Chem. 1970, 376, 134.CrossrefGoogle Scholar

  • [18]

    I. Oftedal, Z. Kristallogr. 1930, 72, 239.Google Scholar

  • [19]

    O. Janka, Th. Schleid, Eur. J. Inorg. Chem. 2009, 2009, 357.CrossrefGoogle Scholar

About the article

Received: 2018-06-12

Accepted: 2018-06-15

Published Online: 2018-07-04


Citation Information: Zeitschrift für Naturforschung B, 20180111, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0111.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in