Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year

IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

See all formats and pricing
More options …
Volume 73, Issue 8


The lanthanide hydride oxides SmHO and HoHO

Nicolas Zapp
  • Institut für Anorganische Chemie, University Leipzig, Johannisallee 29, 04103 Leipzig, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Holger Kohlmann
  • Corresponding author
  • Institut für Anorganische Chemie, University Leipzig, Johannisallee 29, 04103 Leipzig, Germany, Fax: +49 341 9736199
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-03 | DOI: https://doi.org/10.1515/znb-2018-0112


Metal hydride oxides are an interesting class of compounds with potential for hydride ion conduction and as host materials for luminescence. SmHO and HoHO were prepared from mixtures of the sesquioxides Ln2O3 and the hydrides LnH2+x at 1173 K as gray powders (Ln=Sm, Ho). They crystallize in a fluorite type crystal structure with disordered anion distribution (Fmm; SmHO: a=5.46953(6) Å, V=163.625(5) Å3; HoHO: a=5.27782(3) Å, V=147.016(2) Å3, based on powder X-ray diffraction) and show stability towards air. Lanthanide-oxygen and -hydrogen distances are 2.36838(3) Å in SmHO and 2.28536(1) Å in HoHO and comparable to those in binary lanthanide oxides and hydrides. Elemental analyses confirm the composition LnHO. Quantum-mechanical calculations show a negative enthalpy for the reaction RE2O3+REH3→3 REHO for all lanthanides and Y, with increasing values for decreasing ionic radii.

Keywords: ab initio calculations; hydride oxides; metal hydrides; metal oxides; rare earths


  • [1]

    G. Kobayashi, Y. Hinuma, A. Watanabe, M. Hirayama, M. Yonemura, T. Kamiyama, I. Tanaka, R. Kanno, Science 2016, 351, 1314.CrossrefGoogle Scholar

  • [2]

    H. Schwarz, Neuartige Hydrid-Oxide der Seltenen Erden: Ln2LiHO3 mit Ln=La, Ce, Pr und Nd, Dissertation, University Karlsruhe, Karlsruhe, 1991.Google Scholar

  • [3]

    A. Pebler, W. E. Wallace, J. Phys. Chem. 1962, 66, 148.CrossrefGoogle Scholar

  • [4]

    T. Mongstad, C. Platzer-Börkman, S. Zh. Karazjhanov, J. P. Maehlen, B. C. Hauback, J. Alloys Compd. 2011, 509, 812.CrossrefGoogle Scholar

  • [5]

    J. F. Brice, A. Moreau, Ann. Chim. Fr. 1982, 7, 623.Google Scholar

  • [6]

    J. Ueda, S. Matsuishi, T. Tokunaba, S. Tanabe, J. Mater. Chem. C 2018, DOI: 10.1039/C8TC01682H.Google Scholar

  • [7]

    F. L. Carter, Proc. 2nd Rare Earth Res. Conf., Gordon and Breach, New York, 1961, p. 311.Google Scholar

  • [8]

    J. M. Haschke, T. H. Allen, J. Alloys Compd. 2001, 320, 58.CrossrefGoogle Scholar

  • [9]

    B. Malaman, J. F. Brice, J. Solid State Chem. 1984, 53, 44.CrossrefGoogle Scholar

  • [10]

    M. Widerøe, H. Fjellvåg, T. Norby, F. W. Poulsen, R. W. Berg, J. Solid State Chem. 2011, 184, 1890.CrossrefGoogle Scholar

  • [11]

    X. Liu, T. S. Bjørheim, R. Haugsrud, RSC Adv. 2016, 6, 9822.CrossrefGoogle Scholar

  • [12]

    R. D. Shannon, Acta Crystallogr. 1976, A32, 751.Google Scholar

  • [13]

    Z. K. Heiba, M. B. Mohamed, H. Fuess, Mater. Res. Bull. 2013, 48, 3750.CrossrefGoogle Scholar

  • [14]

    T. Schleid, G. Meyer, J. Alloys Compd. 1989, 149, 73–80, 18.Google Scholar

  • [15]

    H. Kohlmann, C. Hein, R. Kautenburger, T. C. Hansen, C. Ritter, S. Doyle, Z. Kristallogr. 2016, 231, 517.Google Scholar

  • [16]

    Z. K. Heiba, M. B. Mohamed, H. Fuess, Cryst. Res. Technol. 2012, 47, 535.CrossrefGoogle Scholar

  • [17]

    S. A. Hering, H. Huppertz, Z. Naturforsch. 2009, 64b, 1032.Google Scholar

  • [18]

    O. Greis, P. Knappe, H. Müller, J. Solid State Chem. 1981, 39, 49.CrossrefGoogle Scholar

  • [19]

    H. Kohlmann, Eur. J. Inorg. Chem. 2010, 2582.Google Scholar

  • [20]

    M. Tkacz, T. Palasyuk, J. Alloys Compd. 2007, 446–447, 593.Google Scholar

  • [21]

    Topas (version 5), General profile and structure analysis software for powder diffraction data, Bruker AXS, Karlsruhe (Germany) 2014.Google Scholar

  • [22]

    J. Furthmüller, G. Kresse, Phys. Rev. B 1996, 54, 11169.CrossrefGoogle Scholar

  • [23]

    J. Furthmüller, G. Kresse, Comput. Mater. Sci. 1996, 6, 15.CrossrefGoogle Scholar

  • [24]

    P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.CrossrefGoogle Scholar

  • [25]

    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.CrossrefGoogle Scholar

  • [26]

    P. E. Blöchl, O. Jepsen, O. K. Andersen, Phys. Rev. B 1994, 49, 16223.CrossrefGoogle Scholar

About the article

Received: 2018-06-20

Accepted: 2018-06-21

Published Online: 2018-07-03

Published in Print: 2018-08-28

Citation Information: Zeitschrift für Naturforschung B, Volume 73, Issue 8, Pages 535–538, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0112.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in