Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year

IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

See all formats and pricing
More options …
Ahead of print


An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6

Matthias Weil
  • Corresponding author
  • Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria, Fax: +4315880117199
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-27 | DOI: https://doi.org/10.1515/znb-2018-0119


The crystal structure of struvite-type KMgAsO4(H2O)6 has been redetermined from single crystal X-ray diffraction data at room temperature. The previous structure model based on powder X-ray diffraction data was confirmed with higher precision and accuracy and with all hydrogen atoms located. KMgAsO4(H2O)6 undergoes a reversible phase transition of the continuous type at 263(2) K, changing the symmetry from orthorhombic to monoclinic. The corresponding Pnm21P1121 symmetry reduction is of a translationengleiche type with index 2 and was monitored by temperature-dependent powder X-ray diffraction measurements. Such a phase transition is unprecedented for struvite-type compounds. The crystal structure of the monoclinic polymorph was determined from a two-domain crystal at 100 K. Except for the motion of one of the water molecules towards stronger hydrogen-bonding interactions, structural changes between the two polymorphs are small.

Graphical Abstract

Keywords: group-subgroup relations; phase transition; struvite; X-ray diffraction

Dedicated to: Professor Wolfgang Bensch on the occasion of his 65th birthday.


  • [1]

    M. Luján, F. Kubel, H. Schmid, Z. Naturforsch. 1995, 50b, 1210.Google Scholar

  • [2]

    M. Luján, J.-P. Rivera, H. Schmid, Ferroelectrics 2011, 162, 69.Google Scholar

  • [3]

    P. Fischer, M. Luján, F. Kubel, H. Schmid, Ferroelectrics 1994, 62, 37.Google Scholar

  • [4]

    S. T. Bramwell, A. M. Buckley, P. Day, J. Solid State Chem. 1994, 111, 48.CrossrefGoogle Scholar

  • [5]

    S. Zhang, Y. Huang, H. Jin Seo, Opt. Mater. 2010, 32, 1545.CrossrefGoogle Scholar

  • [6]

    C. B. Palan, N. S. Bajaj, A. Soni, S. K. Omanwar, J. Lumin. 2016, 176, 106.CrossrefGoogle Scholar

  • [7]

    Z. Abdija, M. Najdoski, V. Koleva, T. Runčevski, R. E. Dinnebier, B. Šoptrajanov, V. Stefov, Z. Anorg. Allg. Chem. 2014, 640, 3177.CrossrefGoogle Scholar

  • [8]

    Apex-2, Saint and Twinabs, Bruker AXS Inc., Madison, Wisconsin (USA) 2015.Google Scholar

  • [9]

    L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr. 2015, 48, 3.CrossrefGoogle Scholar

  • [10]

    G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.Google Scholar

  • [11]

    M. Mathew, L. W. Schroeder, Acta Crystallogr. 1979, B35, 11.Google Scholar

  • [12]

    H. D. Flack, Acta Crystallogr. 1983, A39, 876.Google Scholar

  • [13]

    E. Kroumova, J. M. Perez-Mato, M. I. Aroyo, J. Appl. Crystallogr. 1998, 31, 646.Google Scholar

  • [14]

    M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, H. Wondratschek, Z. Kristallogr. 2006, 221, 15.Google Scholar

  • [15]

    Topas (version 4.2), Bruker AXS GmbH, Karlsruhe (Germany) 2009.Google Scholar

  • [16]

    E. Banks, R. Chianelli, R. Korenstein, Inorg. Chem. 1975, 14, 1634.CrossrefGoogle Scholar

  • [17]

    M. Weil, Cryst. Res. Technol. 2008, 43,1286.CrossrefGoogle Scholar

  • [18]

    M. Weil, Acta Crystallogr. 2008, E64, i50.Google Scholar

  • [19]

    M. Weil, Acta Crystallogr. 2009, E65, i2.Google Scholar

  • [20]

    A. Whitaker, J. W. Jeffery, Acta Crystallogr. 1970, B26, 1429.Google Scholar

  • [21]

    A. Whitaker, J. W. Jeffery, Acta Crystallogr. 1970, B26, 1440.Google Scholar

  • [22]

    G. Ferraris, M. Franchini-Angela, Acta Crystallogr. 1973, B29, 859.Google Scholar

  • [23]

    S. Graeser, W. Postl, H. P. Bojar, P. Berlepsch, T. Armbruster, T. Raber, K. Ettinger, F. Walter, Eur. J. Mineral. 2008, 20, 629.CrossrefGoogle Scholar

  • [24]

    G. V. Kiriukhina, O. V. Yakubovich, E. M. Kochetkova, O. V. Dimitrova, A. S. Volkov, Acta Crystallogr. 2018, C74, 936.Google Scholar

  • [25]

    U. Müller, Symmetry relationships between crystal structures, Oxford University Press, Oxford 2013.Google Scholar

  • [26]

    H. Bärnighausen, MATCH, Commun. Math. Chem. 1980, 9, 139.Google Scholar

  • [27]

    I. D. Brown, The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, Oxford University Press, Oxford 2002.Google Scholar

  • [28]

    I. D. Brown, D. Altermatt, Acta Crystallogr. 1985, B41, 244.Google Scholar

About the article

Received: 2018-06-11

Accepted: 2018-08-09

Published Online: 2018-08-27

Citation Information: Zeitschrift für Naturforschung B, 20180119, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0119.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in