Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Ahead of print

Issues

Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types

Fabian Eustermann
  • Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, Münster 48149, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Frank Stegemann
  • Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, Münster 48149, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Simon Gausebeck
  • Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, Münster 48149, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oliver Janka
  • Corresponding author
  • Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, Münster 48149, Germany, Tel.: +49(0)251-83-36074; Fax: +49(0)251-83-36002
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-19 | DOI: https://doi.org/10.1515/znb-2018-0124

Abstract

Several rare earth metal containing pseudo-ternary compounds in the RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) have been synthesized from the elements by arc-melting or in tantalum capsules. Within the Rh series, the compounds with RE=La–Nd crystallize in the cubic MgCu2-type (Fdm) structure. For Sm besides the cubic Laves phase also the hexagonal Laves phase (MgZn2 type, P63/mmc) is found. For the remaining compounds of both series, also the hexagonal MgZn2-type structure is observed. The structures of Ho2Ru0.96(1)Al3.04(1) (a=547.4(1), c=875.7(1) pm, wR=0.0397, 201 F2 values, 13 variables), Sc2Rh1.01(1)Al2.99(1) (a=528.0(1), c=852.8(1) pm, wR=0.0228, 184 F2 values, 13 variables), Ho2Rh1.00(1)Al3.00(1) (a=546.5(1), c=873.8(1) pm, wR=0.0590, 222 F2 values, 13 variables) and Tb2Ir1.06(1)Al2.94(1) (a=550.8(1), c=870.0(1) pm, wR=0.0743, 221 F2 values, 13 variables) have been refined from single-crystal data, indicating T/Al mixing on both crystallographic Zn sites of the aristotype. The Sc, Y, La and Lu containing compounds exhibit Pauli-paramagnetic behavior, while the other compounds show paramagnetism, in line with the rare earth atoms in the trivalent oxidation state. Ferro- and antiferromagnetic ordering up to TC=50.2(1) K for Gd2RhAl3 is observed, while Sm2RuAl3 shows van Vleck paramagnetism and Yb2RuAl3, finally, exhibits only partially trivalent Yb atoms, evident from a reduced magnetic moment and increased lattice parameters.

Keywords: aluminum; crystal structures; intermetallics; magnetic properties

Dedicated to: Professor Bernt Krebs on the occasion of his 80th birthday.

References

  • [1]

    A. V. Gribanov, A. I. Tursina, A. V. Grytsiv, E. V. Murashova, N. G. Bukhan’ko, P. Rogl, Y. D. Seropegin, G. Giester, J. Alloys Compd. 2008, 454, 164.CrossrefGoogle Scholar

  • [2]

    W. Hermes, S. F. Matar, R. Pöttgen, Z. Naturforsch. 2009, 64b, 901.Google Scholar

  • [3]

    H. Schwer, F. Hulliger, J. Alloys Compd. 1997, 259, 249.CrossrefGoogle Scholar

  • [4]

    D. C. Kundaliya, S. K. Malik, Solid State Commun. 2004, 131, 489.CrossrefGoogle Scholar

  • [5]

    R. H. Cardoso Gil, O. Trovarelli, C. Geibel, Y. Grin, Z. Kristallogr. NCS 1999, 214, 459.Google Scholar

  • [6]

    F. Hulliger, J. Alloys Compd. 1995, 229, 265.CrossrefGoogle Scholar

  • [7]

    N. H. Kumar, L. Menon, C. R. V. Rao, S. K. Malik, P. Raj, A. Sathyamoorthy, K. Shashikala, Solid State Commun. 1999, 109, 345.CrossrefGoogle Scholar

  • [8]

    N. H. Kumar, S. K. Malik, Phys. Rev. B 2000, 62, 127.CrossrefGoogle Scholar

  • [9]

    F. Tappe, C. Schwickert, S. Linsinger, R. Pöttgen, Monatsh. Chem. 2011, 142, 1087.CrossrefGoogle Scholar

  • [10]

    B. Buschinger, C. Geibel, M. Weiden, C. Dietrich, G. Cordier, G. Olesch, J. Köhler, F. Steglich, J. Alloys Compd. 1997, 260, 44.CrossrefGoogle Scholar

  • [11]

    A. M. Strydom, Solid State Commun. 2002, 123, 343.CrossrefGoogle Scholar

  • [12]

    J. Niermann, B. Fehrmann, M. W. Wolff, W. Jeitschko, J. Solid State Chem. 2004, 177, 2600.CrossrefGoogle Scholar

  • [13]

    V. M. T. Thiede, T. Ebel, W. Jeitschko, J. Mater. Chem. 1998, 8, 125.CrossrefGoogle Scholar

  • [14]

    V. Y. Markiv, A. I. Storozhenko, Dopov. Akad. Nauk Ukr. RSR 1973, 941.Google Scholar

  • [15]

    R. E. Gladyshevskii, O. R. Strusievicz, K. Cenzual, E. Parthé, Acta Crystallogr. 1993, B49, 474.Google Scholar

  • [16]

    N. G. Bukhan’ko, A. I. Tursina, S. V. Malyshev, A. V. Gribanov, Y. D. Seropegin, O. I. Bodak, Abstr. 8th Int. Conf. Crystal Chem. Intermet. Compd. 2002, Lviv, Ukraine, p. 84.Google Scholar

  • [17]

    J. Niermann, W. Jeitschko, Z. Anorg. Allg. Chem. 2002, 628, 2549.CrossrefGoogle Scholar

  • [18]

    N. G. Bukhan’ko, A. I. Tursina, S. V. Malyshev, A. V. Gribanov, Y. D. Seropegin, O. I. Bodak, J. Alloys Compd. 2004, 367, 149.CrossrefGoogle Scholar

  • [19]

    G. Wanyin, O. Hiroto, M. Chishiro, Y. Kazuyoshi, J. Phys.: Conf. Ser. 2012, 344, 012023.Google Scholar

  • [20]

    R. Pöttgen, T. Gulden, A. Simon, GIT Labor-Fachzeitschrift 1999, 43, 133.Google Scholar

  • [21]

    J. Emsley, The Elements, Clarendon Press, Oxford University Press, Oxford, New York, 1998.Google Scholar

  • [22]

    D. Kußmann, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 1998, 624, 1727.CrossrefGoogle Scholar

  • [23]

    R. Pöttgen, A. Lang, R.-D. Hoffmann, B. Künnen, G. Kotzyba, R. Müllmann, B. D. Mosel, C. Rosenhahn, Z. Kristallogr. 1999, 214, 143.Google Scholar

  • [24]

    K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73.CrossrefGoogle Scholar

  • [25]

    Pilatus 100K-S Detector System, Technical Specification and Operating Procedure (version 1.7), Dectris, Baden 2011.Google Scholar

  • [26]

    K. H. Lieser, H. Witte, Z. Metallkd. 1952, 43, 396.Google Scholar

  • [27]

    L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786.CrossrefGoogle Scholar

  • [28]

    V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.Google Scholar

  • [29]

    H. Witte, Z. Angew. Mineral. 1938, 1, 255.Google Scholar

  • [30]

    Z. Blazina, Z. Ban, Z. Naturforsch. 1981, 35b, 1162.Google Scholar

  • [31]

    T. Mishra, R.-D. Hoffmann, C. Schwickert, R. Pöttgen, Z. Naturforsch. 2011, 66b, 771.Google Scholar

  • [32]

    P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (on DVD), ASM International®, Materials Park, Ohio (USA), release 2017/2018.Google Scholar

  • [33]

    H. Oesterreicher, J. Less-Common Met. 1973, 33, 25.CrossrefGoogle Scholar

  • [34]

    E. P. Karatygina, V. V. Birnasheva, M. V. Raevskaya, E. M. Sokolovskaya, Metallofizika 1974, 52, 105.Google Scholar

  • [35]

    K. J. Gross, D. Chartouni, F. Fauth, J. Alloys Compd. 2000, 306, 203.CrossrefGoogle Scholar

  • [36]

    Y. E. Filinchuk, D. Sheptyakov, G. Hilscher, K. Yvon, J. Alloys Compd. 2003, 356–357, 673.Google Scholar

  • [37]

    S. Seidel, R. Pöttgen, Z. Anorg. Allg. Chem. 2017, 643, 261.CrossrefGoogle Scholar

  • [38]

    F. C. Frank, J. S. Kasper, Acta Crystallogr. 1958, 11, 184.CrossrefGoogle Scholar

  • [39]

    K. Schubert, H. Breimer, W. Burkhardt, E. Günzel, R. Haufler, H. L. Lukas, H. Vetter, J. Wegst, M. Wilkens, Naturwissenschaften 1957, 44, 229.Google Scholar

  • [40]

    R. Ferro, G. Rambaldi, R. Capelli, G. B. Bonino, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 1964, 36, 491.Google Scholar

  • [41]

    V. B. Compton, Acta Crystallogr. 1958, 11, 446.CrossrefGoogle Scholar

  • [42]

    O. Schob, E. Parthé, Acta Crystallogr. 1965, 19, 214.CrossrefGoogle Scholar

  • [43]

    R. L. Johnston, R. Hoffmann, Z. Anorg. Allg. Chem. 1992, 616, 105.CrossrefGoogle Scholar

  • [44]

    W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys, Wiley, New York, 1972.Google Scholar

  • [45]

    R. E. latson, L. H. Bennett, Acta Metall. 1982, 30, 1941.CrossrefGoogle Scholar

  • [46]

    F. Laves, H. Witte, Metallwirtsch. 1935, 14, 645.Google Scholar

  • [47]

    F. Laves, H. Witte, Metallwirtsch. 1936, 15, 840.Google Scholar

  • [48]

    R. D. Shannon, C. T. Prewitt, Acta Crystallogr. 1969, B25, 925.Google Scholar

  • [49]

    B. C. Sales, D. K. Wohlleben, Phys. Rev. Lett. 1975, 35, 1240.CrossrefGoogle Scholar

  • [50]

    A. M. Stewart, Phys. Rev. B 1972, 6, 1985.CrossrefGoogle Scholar

  • [51]

    H. C. Hamaker, L. D. Woolf, H. B. MacKay, Z. Fisk, M. B. Maple, Solid State Commun. 1979, 32, 289.CrossrefGoogle Scholar

  • [52]

    A. M. Stewart, Phys. Rev. B 1993, 47, 11242.CrossrefGoogle Scholar

  • [53]

    W. M. Yuhasz, N. A. Frederick, P. C. Ho, N. P. Butch, B. J. Taylor, T. A. Sayles, M. B. Maple, J. B. Betts, A. H. Lacerda, P. Rogl, G. Giester, Phys. Rev. B 2005, 71, 104402.CrossrefGoogle Scholar

  • [54]

    D. Yazici, B. D. White, P. C. Ho, N. Kanchanavatee, K. Huang, A. J. Friedman, A. S. Wong, V. W. Burnett, N. R. Dilley, M. B. Maple, Phys. Rev. B 2014, 90, 144406.CrossrefGoogle Scholar

About the article

Received: 2018-06-25

Accepted: 2018-08-27

Published Online: 2018-09-19


Citation Information: Zeitschrift für Naturforschung B, 20180124, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0124.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in