Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Ahead of print

Issues

Preparation and molecular structures of N′-(2-heteroarylmethylidene)-3-(3-pyridyl)acrylohydrazides

Karolina Jasiak
  • Department of Chemical Organic Technology and Petrochemistry, The Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agnieszka Kudelko
  • Department of Chemical Organic Technology and Petrochemistry, The Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katarzyna Gajda / Błażej Dziuk / Bartosz Zarychta / Krzysztof Ejsmont
Published Online: 2018-09-06 | DOI: https://doi.org/10.1515/znb-2018-0132

Abstract

The crystal and molecular structures of N′-(2-furylmethylidene)-3-(3-pyridyl)acrylohydrazide and N′-(2-thienylmethylidene)-3-(3-pyridyl)acrylohydrazide are reported, and the influence of the type of the heteroatom on the aromaticity of the aromatic rings is discussed. Both molecules are nearly planar. The geometry of the acrylohydrazide arrangement is comparable to that of homologous compounds. Density functional theory (DFT) calculations were performed in order to analyze the changes in the geometry of the studied compounds in the crystalline state and for the isolated molecule. The most significant changes were observed in the values of the N–N and C–N bond lengths. The harmonic oscillator model of aromaticity index, calculated for the furan and thiophene rings, demonstrated a noticeable increase in aromaticity in comparison to isolated rings and their DFT-calculated structures. By contrast, the nucleus independent chemical shift index indicated a decrease in aromatic character of the rings containing heteroatoms.

Keywords: acroylhydrazides; aromaticity; crystal structure; density functional theory; heteroaryl substituents; quantum chemical calculations; X-ray structure determination

References

  • [1]

    N. Belkheiri, B. Bouguerne, F. Bedos-Belval, H. Duran, C. Bernis, R. Salvayre, A. Negre-Salvayre, M. Baltas, Eur. J. Med. Chem. 2010, 45, 3019.CrossrefGoogle Scholar

  • [2]

    M. A. A. Radwan, E. A. Ragab, N. M. Sabry, S. M. El-Shenway, Bioorg. Med. Chem. 2007, 15, 3832.CrossrefGoogle Scholar

  • [3]

    A. Almasirad, M. Tajik, D. Bakhtiari, A. Shafiee, M. Abdollahi, M. J. Zamani, R. Khorasani, H. J. Esmaily, Pharm. Pharm. Sci. 2005, 8, 419.Google Scholar

  • [4]

    C. D. Duarte, E. J. Barreiro, C. A. M. Fraga, Mini-Rev. Med. Chem. 2007, 7, 1108.CrossrefGoogle Scholar

  • [5]

    A. Deeb, F. El-Mariah, M. Hosny, Bioorg. Med. Chem. Lett. 2004, 14, 5013.CrossrefGoogle Scholar

  • [6]

    A. J. M. Rasras, T. H. Al-Tel, A. F. Al-Aboudi, R. A. Al-Qawasmeh, Eur. J. Med. Chem. 2010, 45, 2307.CrossrefGoogle Scholar

  • [7]

    N. V. Galako, I. A. Tolmacheva, V. V. Grishko, L. V. Volkova, E. N. Prevozchikova, S. A. Pestereva, Bioorg. Khim. 2010, 36, 556.Google Scholar

  • [8]

    S. K. Sridhar, S. N. Pandeya, J. P. Stables, A. Ramesh, Eur. J. Pharm. Sci. 2002, 16, 129.CrossrefGoogle Scholar

  • [9]

    D. Kaushik, S. A. Khan, G. Chawla, S. Kumar, Eur. J. Med. Chem. 2010, 45, 3943.CrossrefGoogle Scholar

  • [10]

    D. Kumar, N. M. Kumar, S. Ghosh, K. Shah, Bioorg. Med. Chem. Lett. 2012, 22, 212.CrossrefGoogle Scholar

  • [11]

    K. Effenberger, S. Breyer, R. Schobert, Eur. J. Med. Chem. 2010, 45, 1947.CrossrefGoogle Scholar

  • [12]

    A. K. Jordão, P. C. Sathler, V. F. Ferreira, V. R. Campos, M. C. de Souza, H. C. Castro, A. Lannes, A. Lourenco, C. R. Rodrigues, M. L. Bello, M. C. Lourenco, G. S. Carvalho, M. C. Almeida, A. C. Cunha, Bioorg. Med. Chem. 2011, 19, 5605.CrossrefGoogle Scholar

  • [13]

    A. Mahajan, L. Kremer, S. Louw, Y. Guerardel, K. Chibale, C. Biot, Bioorg. Med. Chem. Lett. 2011, 21, 2866.CrossrefGoogle Scholar

  • [14]

    M. Catto, R. Aliano, A. Carotti, S. Cellamare, F. Palluotto, R. Purgatorio, A. de Stradis, F. Campagna, Eur. J. Med. Chem. 2010, 45, 1359.CrossrefGoogle Scholar

  • [15]

    Y. Jin, Z. Tan, M. He, B. Tian, S. Tang, I. Hewlett, M. Yang, Bioorg. Med. Chem. 2010, 18, 2135.CrossrefGoogle Scholar

  • [16]

    M. A. Aslam, S. U. Mahmood, M. Shahid, A. Saeed, J. Iqbal, Eur. J. Med. Chem. 2011, 46, 5473.CrossrefGoogle Scholar

  • [17]

    M. E. Caputto, L. E. Fabian, D. Benitez, A. Merlino, N. Rios, H. Cerecetto, G. Y. Moltrasio, A. G. Moglioni, M. Gonzalez, L. M. Finkielsztein, Bioorg. Med. Chem. 2011, 19, 6818.CrossrefGoogle Scholar

  • [18]

    A. Walcourt, M. Loyevsky, D. B. Lovejoy, V. R. Gordeuk, D. R. Richardson, Int. J. Biochem. Cell Biol. 2004, 36, 401.CrossrefGoogle Scholar

  • [19]

    O. I. el-Sabbagh, M. A. Shabaan, H. H. Kadry, E. S. Al-Din, Eur. J. Med. Chem. 2010, 45, 5390.CrossrefGoogle Scholar

  • [20]

    N. Aggarwal, R. Kumar, C. Srivastva, P. Dureja, J. M. Khurana, J. Agric. Food Chem. 2010, 58, 3056.CrossrefGoogle Scholar

  • [21]

    J. Wu, B. A. Song, D. Y. Hu, M. Yue, S. Yang, Pest Manage. Sci. 2012, 68, 801.CrossrefGoogle Scholar

  • [22]

    I. S. Berdinskii, Chem. Heterocycl. Compd. 1979, 1, 238.Google Scholar

  • [23]

    P. A. S. Smith, Open-Chain Organic Nitrogen Compounds: Derivatives of Hydrazine and Other Hydronitrogens Having N-N Bonds, Benjamin/Cummings Pub. Co., Reading, MA, 1983, p. 43.Google Scholar

  • [24]

    K. B. Wiberg, Science 1964, 144, 705.Google Scholar

  • [25]

    Th. Hahn, H. Klapper in International Tables for Crystallography, Vol. D, (Ed.: A. Authier), 1st online edition, IUCr, Chester, 2006, chapter 3.3, p. 393.Google Scholar

  • [26]

    R. Adams, Organic Reactions, Vol. 3, John Wiley & Sons Inc., New York, 1959, p. 3.Google Scholar

  • [27]

    F. Deeba, M. A. Khan, M. Zia-Ur-Rehman, N. Caylak, E. Sahin, Acta Crystallogr. 2009, E65, 860.Google Scholar

  • [28]

    F. Deeba, M. A. Khan, M. Zia-Ur-Rehman, E. Sahin, N. Caylak, Acta Crystallogr. 2009, E65, 3152.Google Scholar

  • [29]

    F. H. Allen, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor in International Tables for Crystallography, Vol. C, (Ed.: E. Prince), Mathematical, Physical and Chemical Tables, 3rd edition, Springer Verlag, Berlin, 2004, p. 790.Google Scholar

  • [30]

    J. Kruszewski, T. M. Krygowski, Tetrahedron Lett. 1972, 36, 3839.Google Scholar

  • [31]

    T. M. Krygowski, J. Chem. Inf. Comput. Sci. 1993, 33, 70.CrossrefGoogle Scholar

  • [32]

    T. M. Krygowski, M. Cyranski, Tetrahedron 1996, 52, 10255.CrossrefGoogle Scholar

  • [33]

    P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van E. Hommes, J. Am. Chem. Soc. 1996, 118, 6317.CrossrefGoogle Scholar

  • [34]

    M. K. Cyranski, T. M. Krygowski, M. Wisiorowski, N. J. R. van E. Hommes, P. v. R. Schleyer, Angew. Chem. Int. Ed. 1998, 37, 177.CrossrefGoogle Scholar

  • [35]

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian09, Gaussian Inc., Wallingford, CT (USA) 2009.Google Scholar

  • [36]

    M. K. Cyrański, T. M. Krygowski, A. R. Katritzky, P. v. R. Schleyer, J. Org. Chem. 2002, 67, 1333.CrossrefGoogle Scholar

  • [37]

    H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Org. Lett. 2006, 8, 863.CrossrefGoogle Scholar

  • [38]

    Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Chem. Rev. 2005, 105, 3842.CrossrefGoogle Scholar

  • [39]

    CrysAlis CCD and CrysAlis Red, Oxford Diffraction Ltd., Abingdon, Oxford (UK) 2008.Google Scholar

  • [40]

    G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.Google Scholar

  • [41]

    G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.Google Scholar

  • [42]

    A. D. Becke, Phys. Rev. A 1988, 38, 3098.CrossrefGoogle Scholar

  • [43]

    A. D. Becke, J. Chem. Phys. 1993, 98, 5648.CrossrefGoogle Scholar

  • [44]

    C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.CrossrefGoogle Scholar

About the article

Received: 2018-06-19

Accepted: 2018-08-18

Published Online: 2018-09-06


Citation Information: Zeitschrift für Naturforschung B, 20180132, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0132.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in