Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Ahead of print

Issues

Microwave-assisted solvent-free synthesis and spectral and structural characterization of cyclotriphosphazene hexakis(o-tolylamide)

Mohammad Hakimi
  • Corresponding author
  • Chemistry Department, Payame Noor University, Tehran 19395-4697, I. R. Iran, Fax: +98 44 32768825
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Homeyra Rezaei / Keyvan Moeini / Heidar Raissi
  • Chemistry Department, Birjand University, Shokat Abad-Pardis-e-Daneshgag, Birjand, South Khorasan 13179, I. R. Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vaclav Eigner
  • Institute of Physic of the Czech Academy of Sciences, Na Slovance 2, Prague 182 21, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michal Dušek
  • Institute of Physic of the Czech Academy of Sciences, Na Slovance 2, Prague 182 21, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-29 | DOI: https://doi.org/10.1515/znb-2018-0136

Abstract

A new cyclotriphosphazene, 2,2,4,4,6,6-hexakis (o-tolylamono)-1,3,5,2λ5,4λ5,6λ5-triazatriphosphinine (MPAP), was prepared using microwave irradiation and identified by elemental analysis, FT-IR, Raman, 31P NMR spectroscopy, and single-crystal X-ray diffraction. In the crystal, in addition to hydrogen bonds, the network is further stabilized by inter- and intramolecular π–π stacking interactions between aromatic rings.

This article offers supplementary material which is provided at the end of the article.

Keywords: crystal structure; cyclotriphosphazene; microwave; 31P NMR

References

  • [1]

    E. Çil, M. Arslan, F. Aslan, A. I. Öztürk, Phosphorus Sulfur Silicon Relat. Elem. 2003, 178, 1037.Google Scholar

  • [2]

    H. R. Allcock, Chemistry and Application of Phosphazenes, Wiley Interscience, New York, 2003.Google Scholar

  • [3]

    J. H. Goedemoed, K. De Groot, A. M. E. Claessen, R. J. Scheper, J. Control. Release 1991, 17, 235.Google Scholar

  • [4]

    Y. S. Sohn, Y. J. Jun in Polyphosphazenes for Biomedical Applications (Ed.: A. K. Andrianov), John Wiley, Hoboken, New Jersey, 2009, p. 249.Google Scholar

  • [5]

    H. Tang, P. N. Pintauro, J. Appl. Polym. Sci. 2001, 79, 49.Google Scholar

  • [6]

    G. Dotelli, M. C. Gallazzi, C. M. Mari, F. Greppi, E. Montoneri, A. Manuelli, J. Mater. Sci. 2004, 39, 6937.Google Scholar

  • [7]

    M. Gleria, R. D. Jaeger, Phosphazenes A Worldwide Insight, Nova Science Publishers, New York, 2004.Google Scholar

  • [8]

    K. Inoue, T. Yamauchi, T. Itoh, E. Ihara, J. Inorg. Organomet. Polym. Mater. 2007, 17, 367.Google Scholar

  • [9]

    C. S. Reed, J. P. Taylor, K. S. Guigley, M. M. Coleman, H. R. Allcock, Polym. Eng. Sci. 2000, 40, 465.Google Scholar

  • [10]

    M. A. Olshavsky, H. R. Allcock, Macromolecules 1995, 28, 6188.Google Scholar

  • [11]

    C. A. Allen, D. G. Cummings, A. E. Grey, R. E. Mcatee, R. R. Mccaffrey, J. Membr. Sci. 1987, 33, 181.Google Scholar

  • [12]

    M. Hakimi, Z. Mardani, K. Moeini, F. Mohr, E. Schuh, H. Vahedi, Z. Naturforsch. 2012, 67b, 452.Google Scholar

  • [13]

    M. Hakimi, Z. Mardani, K. Moeini, E. Schuh, F. Mohr, Z. Naturforsch. 2013, 68b, 267.Google Scholar

  • [14]

    M. Hakimi, Z. Mardani, K. Moeini, E. Schuh, F. Mohr, Z. Naturforsch. 2013, 68b, 272.Google Scholar

  • [15]

    M. Hakimi, Z. Mardani, K. Moeini, M. Minoura, H. Raissi, Z. Naturforsch. 2011, 66b, 1122.Google Scholar

  • [16]

    M. Gobel, K. Karaghiosoff, T. M. Klapotke, Angew. Chem. Int. Ed. 2006, 45, 6037.Google Scholar

  • [17]

    A. Okumus, S. Bilge, Z. Kilic, A. Ozturk, T. Hokelek, F. Yilmaz, Spectrochim. Acta 2010, A76, 401.Google Scholar

  • [18]

    F. Marandi, K. Moeini, B. Mostafazadeh, H. Krautscheid, Polyhedron 2017, 133, 146.Google Scholar

  • [19]

    M. Hakimi, Z. Mardani, K. Moeini, F. Mohr, Polyhedron 2015, 102, 569.Google Scholar

  • [20]

    CrysAlisPro Software system (version 1.171.38.43), Rigaku Oxford Diffraction, Rigaku Corporation, Oxford (UK) 2018.Google Scholar

  • [21]

    L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786.Google Scholar

  • [22]

    V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. – Cryst. Mater. 2014, 229, 345.Google Scholar

  • [23]

    M. N. Burnett, C. K. Johnson, Ortep-III, Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, TN (USA) 1996.Google Scholar

  • [24]

    L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.Google Scholar

  • [25]

    G. Bergerhoff, M. Berndt, K. Brandenburg, J. Res. Natl. Stand. Technol. 1996, 101, 221.Google Scholar

About the article

Received: 2018-06-29

Accepted: 2018-10-02

Published Online: 2018-10-29


Citation Information: Zeitschrift für Naturforschung B, 20180136, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0136.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in