Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Ahead of print

Issues

Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)

Synthesis, crystal structure, magnetic properties, chemical bonding

Michael Langenmaier
  • Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tobias Rackl
  • Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 München, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dirk Johrendt
  • Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 München, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Caroline Röhr
  • Corresponding author
  • Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-11 | DOI: https://doi.org/10.1515/znb-2018-0138

Abstract

The six isotypic alkali ortho chalcogenido manganates A6[MnIIQ4] (A=Rb, Cs; Q=S, Se, Te) were synthesized – in most cases in pure phase – from stoichiometric mixtures of the manganese monochalcogenides MnQ, the elemental chalcogens and Rb2S/Cs2S2 (sulfido salts) or the pure alkali elements (selenido and tellurido salts) as alkali sources at maximum temperatures between 650 and 800°C. Their hexagonal crystal structures were refined by means of X-ray single crystal data (space group P63mc, Na6ZnO4-type structure, Z=2; A/Q: Rb/S: a=1019.34(2), c=792.560(10) pm, R1=0.0166; Rb/Se: a=1055.74(2), c=821.14(2) pm, R1=0.0275; Rb/Te: a=1126.68(2), c=860.54(2) pm, R1=0.0152; Cs/S: a=1056.68(2), c=831.22(2) pm, R1=0.0168; Cs/Se: a=1096.04(3), c=858.13(2) pm, R1=0.0194; and Cs/Te: a=1167.72(3), c=896.95(2) pm, R1=0.0140). The chiral structures contain isolated C3 symmetric, but very close to ideal tetrahedral, ortho manganate(II) anions [MnIIQ4]6− with Mn–Q distances of 248.7–250.7 (Q=S), 260.7–263.0 (Q=Se) and 280.0–282.4 pm (Q=Te). The chalcogenide ions form a hexagonal closed packing with slightly puckered 36 nets, in which the A(2) cations occupy 3/4 of the octahedral interstices, whereas Mn takes 1/8 and A(1) 3/8 of the tetrahedral voids. Magnetic measurements on the three Cs compounds showed Curie-Weiss behavior down to a temperature of 1.9 K, with magnetic moments significantly reduced with respect to the expected spin-only value of a d5 ion. The electronic band structures of the four salts (Na/Rb)6Mn(S/Te)4, which were calculated within the GGA+U approach, allow a comparison of the chemical bonding characteristics and the magnetic properties within the alkali cation and the chalcogenido ligand series.

Keywords: cesium; chalcogenido manganates; crystal structure; magnetic properties; manganese; rubidium

Dedicated to: Professor Bernt Krebs on the occasion his 80th birthday.

References

  • [1]

    W. Bronger, P. Müller, J. Alloys Compd. 1997, 246, 27.CrossrefGoogle Scholar

  • [2]

    W. Bronger, Angew. Chem. Int. Ed. Engl. 1981, 20, 52.CrossrefGoogle Scholar

  • [3]

    M. R. Harrison, M. G. Francesconi, Coord. Chem. Rev. 2011, 255, 451.CrossrefGoogle Scholar

  • [4]

    M. Schwarz, M. Haas, C. Röhr, Z. Anorg. Allg. Chem. 2013, 639, 360.CrossrefGoogle Scholar

  • [5]

    P. Müller, W. Bronger, Z. Naturforsch. 1979, 34b, 1264.Google Scholar

  • [6]

    P. Müller, W. Bronger, Z. Naturforsch. 1981, 36b, 646.Google Scholar

  • [7]

    W. Bronger, U. Ruschewitz, P. Müller, J. Alloys Compd. 1992, 187, 95.CrossrefGoogle Scholar

  • [8]

    W. Bronger, H. S. Genin, P. Müller, Z. Anorg. Allg. Chem. 1999, 625, 274.CrossrefGoogle Scholar

  • [9]

    W. Bronger, U. Ruschewitz, J. Alloys Compd. 1993, 198, 177.CrossrefGoogle Scholar

  • [10]

    M. Schwarz, P. Stüble, C. Röhr, Z. Naturforsch. 2017, 72b, 529.Google Scholar

  • [11]

    M. Schwarz, C. Röhr, Inorg. Chem. 2015, 54, 1038.CrossrefGoogle Scholar

  • [12]

    W. Bronger, M. Kimpel, D. Schmitz, Angew. Chem. Int. Ed. Engl. 1982, 21, 544.Google Scholar

  • [13]

    P. Stüble, A. Berroth, C. Röhr, Z. Naturforsch. 2016, 71b, 485.Google Scholar

  • [14]

    Z. Seidov, H.-A. K. von Nidda, V. Tsurkan, I. G. Filippova, A. Günther, T. P. Gavrilova, F. G. Vagizov, A. G. Kiiamov, L. R. Tagirov, A. Loidl, Phys. Rev. B 2016, 94, 134414.CrossrefGoogle Scholar

  • [15]

    P. Stüble, C. Röhr, Z. Anorg. Allg. Chem. 2017, 643, 1462.CrossrefGoogle Scholar

  • [16]

    R. H. Mitchell, K. C. Ross, E. G. Potter, J. Solid State Chem. 2004, 177, 1867.CrossrefGoogle Scholar

  • [17]

    M. Schwarz, C. Röhr, Z. Anorg. Allg. Chem. 2015, 641, 1053.CrossrefGoogle Scholar

  • [18]

    M. Atanasov, R. H. Potze, G. A. Sawatzky, J. Solid State Chem. 1995, 199, 380.Google Scholar

  • [19]

    P. Stüble, S. Peschke, D. Johrendt, C. Röhr, J. Solid State Chem. 2018, 258, 416.CrossrefGoogle Scholar

  • [20]

    K. O. Klepp, W. Bronger, Z. Anorg. Allg. Chem. 1986, 532, 23.CrossrefGoogle Scholar

  • [21]

    W. Bronger, H. Balk-Hardtdegen, U. Ruschewitz, Z. Anorg. Allg. Chem. 1992, 616, 14.CrossrefGoogle Scholar

  • [22]

    W. Bronger, U. Ruschewitz, J. Alloys Compd. 1993, 197, 83.CrossrefGoogle Scholar

  • [23]

    W. Bronger, H. Balk-Hardtdegen, Z. Anorg. Allg. Chem. 1989, 574, 89.CrossrefGoogle Scholar

  • [24]

    W. Bronger, M. Böhmer, P. Müller, J. Alloys Compd. 2002, 338, 116.CrossrefGoogle Scholar

  • [25]

    K. Klepp, W. Bronger, Z. Naturforsch. 1983, 38b, 12.Google Scholar

  • [26]

    W. Bronger, C. Bomba, J. Less-Common Met. 1990, 162, 309.CrossrefGoogle Scholar

  • [27]

    W. Bronger, C. Bomba, W. Koelman, Z. Anorg. Allg. Chem. 1995, 621, 409.CrossrefGoogle Scholar

  • [28]

    W. Bronger, W. Koelmann, P. Müller, Z. Anorg. Allg. Chem. 1995, 621, 412.CrossrefGoogle Scholar

  • [29]

    K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73.CrossrefGoogle Scholar

  • [30]

    A. C. Larson, R. B. V. Dreele. General Structure Analysis System (Gsas). Los Alamos National Laboratory Report LAUR 86-748, 2000.Google Scholar

  • [31]

    B. H. Toby, J. Appl. Crystallogr. 2001, 34, 210.CrossrefGoogle Scholar

  • [32]

    G. Brauer. Handbuch der präparativen anorganischen Chemie, Enke Verlag, Stuttgart, 1981.Google Scholar

  • [33]

    W. Bronger, H. Hardtdegen, M. Kanert, P. Müller, D. Schmitz, Z. Anorg. Allg. Chem. 1996, 622, 313.CrossrefGoogle Scholar

  • [34]

    W. Bronger, H. Balk-Hardtdegen, D. Schmitz, Z. Anorg. Allg. Chem. 1989, 574, 99.CrossrefGoogle Scholar

  • [35]

    P. Kastner, R. Hoppe, Z. Anorg. Allg. Chem. 1974, 409, 69.CrossrefGoogle Scholar

  • [36]

    G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.Google Scholar

  • [37]

    G. M. Sheldrick. Sadabs, Program for absorption correction for data from area detector frames, Bruker Analytical X-ray Systems, Inc. Madison Wisconsin, (USA), 2008.Google Scholar

  • [38]

    Further details on the crystal structure investigation are available from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen 2 on quoting the depository numbers CSD 434610 (Rb6MnS4), 434611 (Rb6MnSe4), 434612 (Rb6MnTe4), 434613 (Cs6MnS4), 434614 (Cs6MnSe4) and 434615 (Cs6MnTe4), the names of the authors, and citation of the paper (E-mail: crysdata@fiz-karlsruhe.de).Google Scholar

  • [39]

    P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz. Wien2k, An augmented plane wave and local orbital program for calculating crystal properties. TU Wien, Vienna (Austria) ISBN3-9501031-1-2, 2006.Google Scholar

  • [40]

    J. P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.CrossrefGoogle Scholar

  • [41]

    A. Jain, G. Hautier, C. J. Moore, S. P. Ong, C. C. Fischer, T. Mueller, K. A. Persson, G. Ceder, Comp. Mater. Sci. 2011, 50, 2295.CrossrefGoogle Scholar

  • [42]

    V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyzyk, G. A. Sawatzky, Phys. Rev. B 1993, 48, 16929.CrossrefGoogle Scholar

  • [43]

    A. I. Lichtenstein, V. I. Anisimov, J. Zaanen, Phys. Rev. B 1995, 52, R5467.CrossrefGoogle Scholar

  • [44]

    A. Kokalj, J. Mol. Graphics Modell. 1999, 17, 176.CrossrefGoogle Scholar

  • [45]

    L. W. Finger, M. Kroeker, B. H. Toby, J. Appl. Crystallogr. 2007, 40, 188.CrossrefGoogle Scholar

  • [46]

    R. W. F. Bader, Atoms in Molecules. A Quantum Theory, International Series of Monographs on Chemistry, Clarendon Press, Oxford 1994.Google Scholar

  • [47]

    A. O. de-la Roza, M. A. Blanco, A. Martá, A. M. Pendás, V. Luaña, Comput. Phys. Commun. 2009, 180, 157.CrossrefGoogle Scholar

  • [48]

    A. O. de-la Roza, V. Luaña, J. Comput. Chem. 2010, 32, 291.Google Scholar

  • [49]

    M. N. Burnett, C. K. Johnson. Ortep-III. ORNL-6895, Oak Ridge National Laboratory, Oak Ridge, Tennessee (USA) 1996.Google Scholar

  • [50]

    R. D. Shannon, Acta Crystallogr. 1976, A32, 751.Google Scholar

  • [51]

    H. Bärnighausen, Match Commun. Math. Comput. Chem. 1980, 9, 139.Google Scholar

  • [52]

    U. Müller, Z. Anorg. Allg. Chem. 2004, 630, 1519.CrossrefGoogle Scholar

  • [53]

    FIZ Karlsruhe. Inorganic Crystal Structure Database, 2018.Google Scholar

  • [54]

    H. Sommer, R. Hoppe, Z. Anorg. Allg. Chem. 1978, 443, 201.CrossrefGoogle Scholar

  • [55]

    P. Burlet, E. Ressouche, B. Malaman, R. Welter, J. P. Sanchez, P. Vulliet, Phys. Rev. B 1997, 56, 14013.CrossrefGoogle Scholar

  • [56]

    M. Wakeshima, Y. Hinatsu, K. Oikawa, Y. Shimojo, Y. Morii, J. Mater. Chem. 2000, 10, 2183.CrossrefGoogle Scholar

  • [57]

    M.-H. Whangbo, H.-J. Koo, D. Dai, J. Solid State Chem. 2003, 176, 4147.Google Scholar

  • [58]

    M. Mödl, M. Dolg, P. Fulde, H. Stoll, J. Chem. Phys. 1997, 106, 1836.CrossrefGoogle Scholar

  • [59]

    A. Rohrbach, J. Hafner, G. Kresse, J. Phys.: Condens. Matter. 2003, 15, 979.Google Scholar

  • [60]

    A. Devey, N. H. de Leeuw, Phys. Rev. B 2010, 82, 235112.CrossrefGoogle Scholar

  • [61]

    J. Zaanen, G. A. Sawatzky, J. W. Allen, Phys. Rev. Lett. 1985, 55, 418.CrossrefGoogle Scholar

About the article

Received: 2018-07-01

Accepted: 2018-07-21

Published Online: 2018-09-11


Citation Information: Zeitschrift für Naturforschung B, 20180138, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0138.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in