Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Ahead of print

Issues

ZrNiAl-type gallides with pronounced metal-metal bonding, and the dimorphism of ScPdGa

Lukas Heletta
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Samir F. Matar / Rainer Pöttgen
  • Corresponding author
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-25 | DOI: https://doi.org/10.1515/znb-2018-0140

Abstract

The ZrNiAl-type (space group P6̅2m) gallides TIrGa (T=Zr, Nb, Hf, Ta), ZrNiGa and ScPdGa were obtained by arc-melting of the elements, followed by annealing in sealed silica tubes. The samples have been characterized through their Guinier powder patterns. The structures of ZrNiGa, NbIr1.08Ga0.92 and TaIr1.10Ga0.90 were refined from single-crystal X-ray diffractometer data. Refinements of the occupancy parameters indicate the formation of solid solutions for the niobium and the tantalum compound. Within the huge family of ZrNiAl-type phases, NbIr1.08Ga0.92 and TaIr1.10Ga0.90 have the smallest c/a ratios; however, no structural distortions or superstructure formation have been observed. Electronic structure calculations were exemplarily carried out for NbIrGa, substantiating the dominance of the Ir–Ga and Nb–Ir bonding interactions. Temperature dependent magnetic susceptibility measurements of LT-ScPdGa, ZrIrGa, NbIrGa and HfIrGa have shown Pauli paramagnetism. ScPdGa is dimorphic with an orthorhombic TiNiSi-type high-temperature modification (arc-melting and quenching; space group Pnma) which transforms to the hexagonal ZrNiAl-type low-temperature modification upon annealing at 1023 K. Both structures were refined from single-crystal X-ray diffractometer data. HT-ScPdGa exclusively shows Pd–Ga bonding within the three-dimensional [PdGa] polyanionic network, while additional weak Pd–Pd and Ga–Ga interactions occur in LT-ScPdGa.

Keywords: crystal structure; gallium intermetallics; magnetic properties; transition metal compounds

Dedicated to: Professor Wolfgang Bensch on the occasion of his 65th birthday.

References

  • [1]

    P. I. Krypyakevich, V. Ya. Markiv, E. V. Melnyk, Dopov. Akad. Nauk. Ukr. RSR Ser. A 1967, 750.Google Scholar

  • [2]

    A. E. Dwight, M. H. Mueller, R. A. Conner, Jr., J. W. Downey, H. Knott, Trans. Met. Soc. AIME 1968, 242, 2075.Google Scholar

  • [3]

    M. F. Zumdick, R.-D. Hoffmann, R. Pöttgen, Z. Naturforsch. 1999, 54b, 45.Google Scholar

  • [4]

    S. Gupta, K. G. Suresh, J. Alloys Compd. 2015, 618, 562.CrossrefGoogle Scholar

  • [5]

    E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edition, Springer, Berlin, 1993.Google Scholar

  • [6]

    P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2017/18), ASM International®, Materials Park, Ohio (USA) 2017.Google Scholar

  • [7]

    E. Parthé, L. M. Gelato, Acta Crystallogr. 1984, A40, 169.Google Scholar

  • [8]

    L. M. Gelato, E. Parthé, J. Appl. Crystallogr. 1987, 20, 139.CrossrefGoogle Scholar

  • [9]

    W. Jeitschko, Acta Crystallogr. B 1970, 26, 815.CrossrefGoogle Scholar

  • [10]

    M. F. Zumdick, R. Pöttgen, Z. Kristallogr. 1999, 214, 90.Google Scholar

  • [11]

    Yu. Verbovytsky, K. Łątka, J. Alloys Compd. 2007, 431, 130.CrossrefGoogle Scholar

  • [12]

    Yu. Verbovytsky, K. Łątka, Chem. Met. Alloys 2008, 1, 261.Google Scholar

  • [13]

    R. Demchyna, Yu. Prots, U. Schwarz, Yu. Grin, Z. Anorg. Allg. Chem. 2006, 632, 2152.CrossrefGoogle Scholar

  • [14]

    R. Demchyna, Yu. Prots, U. Burkhardt, U. Schwarz, Yu. Grin, Z. Kristallogr. NCS 2006, 221, 427.Google Scholar

  • [15]

    Yu. Verbovytsky, K. Łątka, Chem. Met. Alloys 2008, 1, 250.Google Scholar

  • [16]

    R. Mishra, R. Pöttgen, R.-D. Hoffmann, H. Trill, B. D. Mosel, H. Piotrowski, M. F. Zumdick, Z. Naturforsch. 2001, 56b, 589.Google Scholar

  • [17]

    T. Harmening, C. P. Sebastian, L. Zhang, C. Fehse, H. Eckert, R. Pöttgen, Solid State Sci. 2008, 10, 1395.CrossrefGoogle Scholar

  • [18]

    T. Evstigneeva, Yu. Kabalov, J. Schneider, Mater. Sci. For. 2000, 321–324, 700.Google Scholar

  • [19]

    M. Dryś, J. Less-Common Met. 1978, 58, 173.CrossrefGoogle Scholar

  • [20]

    P. Villars, L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd edition, American Society for Metals, Materials Park, OH 44073, 1991, and Desk Edition 1997.Google Scholar

  • [21]

    R. Pöttgen, Th. Gulden, A. Simon, GIT Labor-Fachzeitschrift 1999, 43, 133.Google Scholar

  • [22]

    E. Hovestreydt, N. Engel, K. Klepp, B. Chabot, E. Parthé, J. Less-Common Met. 1982, 85, 247.CrossrefGoogle Scholar

  • [23]

    A. E. Dwight, C. W. Kimball, J. Less-Common Met. 1987, 127, 179.CrossrefGoogle Scholar

  • [24]

    K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73.CrossrefGoogle Scholar

  • [25]

    Yu. Verbovytsky, Visn. Lviv. Derzh. Univ. Ser. Khim. 2008, 49, 10.Google Scholar

  • [26]

    L. Palatinus, Acta Crystallogr. 2013, 69b, 1.Google Scholar

  • [27]

    L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786.CrossrefGoogle Scholar

  • [28]

    V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.Google Scholar

  • [29]

    H. D. Flack, G. Bernadinelli, Acta Crystallogr. 1999, A55, 908.Google Scholar

  • [30]

    H. D. Flack, G. Bernadinelli, J. Appl. Crystallogr. 2000, 33, 1143.CrossrefGoogle Scholar

  • [31]

    S. Parsons, H. D. Flack, T. Wagner, Acta Crystallogr. 2013, B69, 249.Google Scholar

  • [32]

    T. Harmening, H. Eckert, C. M. Fehse, C. P. Sebastian, R. Pöttgen, J. Solid State Chem. 2011, 184, 3303.CrossrefGoogle Scholar

  • [33]

    R.-D. Hoffmann, R. Pöttgen, Z. Kristallogr. 2001, 216, 127.Google Scholar

  • [34]

    R. Herbst-Irmer, Z. Kristallogr. 2016, 231, 573.Google Scholar

  • [35]

    P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.CrossrefGoogle Scholar

  • [36]

    W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.CrossrefGoogle Scholar

  • [37]

    G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.CrossrefGoogle Scholar

  • [38]

    G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.Google Scholar

  • [39]

    P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.CrossrefGoogle Scholar

  • [40]

    J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.CrossrefGoogle Scholar

  • [41]

    D. M. Ceperley, B. J. Alder, Phys. Rev. Lett. 1980, 45, 566.CrossrefGoogle Scholar

  • [42]

    R. F. W. Bader, Chem. Rev. 1991, 91, 893.CrossrefGoogle Scholar

  • [43]

    H. M. Petrilli, P. E. Blöchl, P. Blaha, K. Schwarz, Phys. Rev. B 1998, 57, 14690.CrossrefGoogle Scholar

  • [44]

    A. R. Williams, J. Kübler, C. D. Gelatt Jr., Phys. Rev. B 1979, 19, 6094.CrossrefGoogle Scholar

  • [45]

    V. Eyert, The Augmented Spherical Wave Method – A Comprehensive Treatment, Lecture Notes in Physics, Springer, Heidelberg, 2007.Google Scholar

  • [46]

    R. Hoffmann, Angew. Chem. Int. Ed. Engl. 1987, 26, 846.CrossrefGoogle Scholar

  • [47]

    P. E. Blöchl, O. Jepsen, O. K. Andersen, Phys. Rev. B 1994, 49, 16223.CrossrefGoogle Scholar

  • [48]

    V. Ya. Markiv, P. I. Kripyakevich, Sov. Phys. Crystallogr. 1967, 11, 733.Google Scholar

  • [49]

    J. Emsley, The Elements, Oxford University Press, Oxford 1999.Google Scholar

  • [50]

    J. Donohue, The Structures of the Elements, Wiley, New York 1974.Google Scholar

  • [51]

    E. I. Gladyshevskii, Y. Grin, S. P. Yatsenko, Y. P. Yarmolyuk, K. A. Chutonov, Dopov. Akad. Nauk. Ukr. RSR Ser. A 1980, 6, 81.Google Scholar

  • [52]

    L. Schubert, R.-D. Hoffmann, R. Pöttgen, Z. Naturforsch., to be published.Google Scholar

  • [53]

    S. Stein, R.-D. Hoffmann, R. Pöttgen, Z. Kristallogr., to be published.Google Scholar

  • [54]

    R.-D. Hoffmann, U. Ch. Rodewald, S. Haverkamp, C. Benndorf, H. Eckert, B. Heying, R. Pöttgen, Solid State Sci. 2017, 72, 109.CrossrefGoogle Scholar

  • [55]

    J. F. Riecken, G. Heymann, H. Huppertz, R. Pöttgen, Z. Anorg. Allg. Chem. 2007, 633, 869.CrossrefGoogle Scholar

  • [56]

    R. Pöttgen, W. Jeitschko, Inorg. Chem. 1991, 30, 427.CrossrefGoogle Scholar

  • [57]

    T. Harmening, L. van Wüllen, H. Eckert, U. Ch. Rodewald, R. Pöttgen, Z. Anorg. Allg. Chem. 2010, 636, 972.CrossrefGoogle Scholar

  • [58]

    G. Nuspl, K. Polborn, J. Evers, G. A. Landrum, R. Hoffmann, Inorg. Chem. 1996, 35, 6922.CrossrefGoogle Scholar

  • [59]

    G. A. Landrum, R. Hoffmann, J. Evers, H. Boysen, Inorg. Chem. 1998, 37, 5754.CrossrefGoogle Scholar

  • [60]

    C. Benndorf, L. Heletta, G. Heymann, H. Huppertz, H. Eckert, R. Pöttgen, Solid State Sci. 2017, 68, 32.CrossrefGoogle Scholar

  • [61]

    S. Yashiro, A. Kasahi, R. Kasai, H. Samata, Y. Nagata, J. Alloys Compd. 2000, 309, 51.CrossrefGoogle Scholar

About the article

Received: 2018-07-09

Accepted: 2018-08-31

Published Online: 2018-09-25


Citation Information: Zeitschrift für Naturforschung B, 20180140, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0140.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in