Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year

IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

See all formats and pricing
More options …
Ahead of print


Magnetic and magnetocaloric properties of the coloured Heusler phases GdAg2Mg and REAgAuMg (RE=Gd, Tb, Dy)

Lukas Heletta
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sebastian Stein
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rainer Pöttgen
  • Corresponding author
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-05 | DOI: https://doi.org/10.1515/znb-2018-0151


The magnetocaloric effect (MCE) of the ferromagnetic compound GdAg2Mg [TC=98.3(5) K] was investigated along with its electrical resistivity and the specific heat capacity. The magnetic entropy changes (–ΔSM) as well as the changes in adiabatic temperature (ΔTad) have been calculated from these data. Furthermore, the magnetic susceptibility of the pseudo-quaternary Heusler phases GdAgAuMg, TbAgAuMg and DyAgAuMg [i.e. RE(Ag0.5Au0.5)2Mg] were measured and compared to the data for the pure silver and gold compounds REAg2Mg and REAu2Mg. The substitution of the transition metal at the crystallographic Wyckoff site 8c influences the magnetic ground state of the trivalent rare earth metals and therefore drastically alters the Curie temperatures. The structure of GdAgAuMg was refined from single crystal X-ray diffraction data, revealing a small deviation from the equiatomic composition leading to the refined formula GdAg0.92(6)Au1.08(6)Mg [space group Fmm, Z=4, a=695.03(10) pm, wR2=0.0883, 55 F2 values, six parameters]. The intermetallic compounds were synthesised in sealed niobium ampoules under high temperature conditions. They have reddish to brassy colour.

Graphical Abstract

Keywords: crystal structure; Heusler phase; intermetallics; magnetocaloric effect


  • [1]

    F. Heusler, W. Starck, E. Haupt, Verh. Dtsch. Phys. Ges. 1903, 5, 219.Google Scholar

  • [2]

    O. Heusler, Ann. Phys. 1934, 19, 155.Google Scholar

  • [3]

    M. H. F. Sluiter, Phase Trans. 2007, 80, 299.CrossrefGoogle Scholar

  • [4]

    U. Müller, Inorganic Structural Chemistry, 2nd ed., Wiley, Chichester, 2007.Google Scholar

  • [5]

    R. Pöttgen, Z. Anorg. Allg. Chem. 2014, 640, 869.CrossrefGoogle Scholar

  • [6]

    R. Pöttgen, D. Johrendt, Intermetallics, De Gruyter, Berlin, 2014.Google Scholar

  • [7]

    P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2017/18), ASM International®, Materials Park, Ohio (USA) 2017.Google Scholar

  • [8]

    P. J. Webster, Contemp. Phys. 1969, 10, 559.CrossrefGoogle Scholar

  • [9]

    Y. Kurtulus, M. Gilleßen, R. Dronskowski, J. Comput. Chem. 2005, 27, 90.Google Scholar

  • [10]

    M. Gilleßen, R. Dronskowski, J. Comput. Chem. 2009, 30, 1290.CrossrefGoogle Scholar

  • [11]

    T. Graf, C. Felser, S. S. P. Parkin, Progr. Solid State Chem. 2011, 39, 1.CrossrefGoogle Scholar

  • [12]

    Z. Bai, L. Shen, G. Han, Y. P. Feng, Spin, 2012, 2, 1230006.CrossrefGoogle Scholar

  • [13]

    L. Wollmann, A. K. Nayak, S. S. P. Parkin, C. Felser, Ann. Rev. Mater. Res. 2017, 47, 247.CrossrefGoogle Scholar

  • [14]

    A. Szytuła, J. Leciejewicz, Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics, CRC Press, Boca Raton, 1994.Google Scholar

  • [15]

    P. Wang, Z. M. Stadnik, J. Phys.: Condens. Matter 2007, 19, 346235.Google Scholar

  • [16]

    U. Ch. Rodewald, B. Chevalier, R. Pöttgen, J. Solid State Chem. 2007, 180, 1720.CrossrefGoogle Scholar

  • [17]

    F. Tappe, R. Pöttgen, Rev. Inorg. Chem. 2011, 31, 5.Google Scholar

  • [18]

    G. Berger, A. Weiss, J. Less-Common Met. 1988, 142, 109.CrossrefGoogle Scholar

  • [19]

    S. K. Dhar, R. Settai, Y. Ōnuki, A. Galatanu, Y. Haga, P. Manfrinetti, M. Pani, J. Magn. Magn. Mater. 2007, 308, 143.CrossrefGoogle Scholar

  • [20]

    M. Johnscher, S. Stein, O. Niehaus, C. Benndorf, L. Heletta, M. Kersting, C. Höting, H. Eckert, R. Pöttgen, Solid State Sci. 2016, 52, 57.CrossrefGoogle Scholar

  • [21]

    C. Benndorf, S. Stein, L. Heletta, M. Kersting, H. Eckert, R. Pöttgen, Dalton Trans. 2017, 46, 250.CrossrefGoogle Scholar

  • [22]

    R. Pöttgen, T. Gulden, A. Simon, GIT Labor-Fachz. 1999, 43, 133.Google Scholar

  • [23]

    D. Kußmann, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 1998, 624, 1727.CrossrefGoogle Scholar

  • [24]

    L. J. van der Pauw, Philips Res. Rep. 1958, 13, 1.Google Scholar

  • [25]

    K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1997, 10, 73.Google Scholar

  • [26]

    V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.Google Scholar

  • [27]

    C. Janiak, H.-J. Meyer, D. Gudat, P. Kurz, Moderne Anorganische Chemie, 5. Auflage, De Gruyter, Berlin, 2018.Google Scholar

  • [28]

    J. Drews, U. Eberz, H.-U. Schuster, J. Less-Common Met. 1986, 116, 271.CrossrefGoogle Scholar

  • [29]

    J. Emsley, The Elements, 3rd ed., Oxford Press, Oxford, 1998.Google Scholar

  • [30]

    Th. Fickenscher, R. Pöttgen, J. Solid State Chem. 2001, 161, 67.CrossrefGoogle Scholar

  • [31]

    R. Pöttgen, R.-D. Hoffmann, J. Renger, U. Ch. Rodewald, M. H. Möller, Z. Anorg. Allg. Chem. 2000, 626, 2257.CrossrefGoogle Scholar

  • [32]

    A. Arrott, Phys. Rev. 1957, 108, 1394.CrossrefGoogle Scholar

  • [33]

    A. Hirohata, T. Huminiuc, J. Sinclair, H. Wu, M. Samiepour, G. Vallejo-Fernandez, K. O´Grady, J. Balluf, M. Meinert, G. Reiss, E. Simon, S. Khmelevskyi, L. Szunyogh, R. Díaz, U. Nowak, T. Tsuchiya, T. Sugiyama, T. Kubota, K. Takanashi, N. Inami, K. Ono, J. Phys. D: Appl. Phys. 2017, 50, 443001.CrossrefGoogle Scholar

  • [34]

    A. M. Nikitin, Y. Pan, X. Mao, R. Jehee, G. K. Araizi, Y. K. Huang, C. Paulsen, S. C. Wu, B. H. Yan, A. de Visser, J. Phys.: Condens. Matter 2015, 27, 275701.Google Scholar

  • [35]

    Q. Mao, J. Yang, H. Wang, R. Khan, J. Du, Y. Zhou, B. Xu, Q. Chen, M. Fang, Sci. Rep. 2016, 6, 34235.CrossrefGoogle Scholar

  • [36]

    S. K. Banerjee, Phys. Lett. 1964, 12, 16.Google Scholar

  • [37]

    L. Li, O. Niehaus, M. Kersting, R. Pöttgen, Appl. Phys. Lett. 2014, 104, 092416.CrossrefGoogle Scholar

  • [38]

    L. Li, Chin. Phys. B 2016, 25, 037502.CrossrefGoogle Scholar

  • [39]

    V. K. Pecharsky, K. A. Gscheidner Jr., J. Magn. Magn. Mater. 1999, 200, 44.CrossrefGoogle Scholar

  • [40]

    L. Li, O. Niehaus, B. Gerke, R. Pöttgen, IEEE Trans. Magn. 2014, 50, 2503604.Google Scholar

  • [41]

    H. Lueken, Magnetochemie, Teubner, Leipzig, 1999.Google Scholar

  • [42]

    K. Łątka, Z. Tomkowicz, R. Kmieć, A. W. Pacyna, R. Mishra, T. Fickenscher, R.-D. Hoffmann, R. Pöttgen, H. Piotrowski, J. Solid State Chem. 2002, 168, 331.CrossrefGoogle Scholar

  • [43]

    K. Łątka, R. Kmieć, A. W. Pacyna, T. Fickenscher, R.-D. Hoffmann, R. Pöttgen, Solid State Sci. 2004, 6, 301.CrossrefGoogle Scholar

  • [44]

    R. A. Layfield, M. Musugesu, Lanthanides and Actinides in Molecular Magnetism, Wiley-VCH, Weinheim, 2015.Google Scholar

  • [45]

    M. Jansen, Solid State Sci. 2005, 7, 1464.CrossrefGoogle Scholar

About the article

Received: 2018-07-24

Accepted: 2018-07-31

Published Online: 2018-09-05

Citation Information: Zeitschrift für Naturforschung B, 20180151, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0151.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in