Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Ahead of print

Issues

Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)

Frank Stegemann
  • Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oliver Janka
  • Corresponding author
  • Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, 48149 Münster, Germany
  • Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Strasse 9–11, 26129 Oldenburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-27 | DOI: https://doi.org/10.1515/znb-2018-0153

Abstract

The rare earth metal-rich cobalt and nickel aluminium compounds with the general compositions RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu) have been synthesised from the elements by arc-melting, followed by annealing. Single-crystal X-ray diffraction experiments on Y6Co2.02(1)Al0.98(1) (Ho6Co2Ga type; Immm; a=944.1(2), b=952.4(2), c=999.0(2) pm; wR2=0.0452, 1123 F2 values, 35 variables) and Y6Ni2.26(1)Al0.74(1) (Ho6Co2Ga type; Immm; a=938.30(5), b=959.45(5), c=996.05(6) pm; wR2=0.0499, 1131 F2 values, 35 variables) revealed that the compounds form solid solutions according to the general formula RE6(Co/Ni)2+xAl1−x with different homogeneity ranges. The compounds of the Ni series can be obtained in X-ray pure form only with the nominal composition RE6Ni2.25Al0.75. A significant increase of the U22 component of the anisotropic displacement parameters of the Co/Ni2 atoms (4g site) was observed that requires a description of the structure with a split-position model at RT. Further investigations by low temperature (90 K) single-crystal X-ray diffraction experiments of Y6Co2.02(1)Al0.98(1) showed a significant decrease of U22. Magnetic measurements were conducted on the X-ray pure members of the RE6Co2Al (RE=Y, Dy–Tm, Lu) series. Antiferromagnetic ordering was observed for the members with unpaired f electrons with Néel temperatures up to TN=48.0(1) K and two spin reorientations for Dy6Co2Al.

Keywords: aluminium; cobalt; intermetallics; nickel; physical properties; rare earth metals

Dedicated to: Professor Werner Uhl on the occasion of his 65th birthday.

References

  • [1]

    F. Tappe, C. Schwickert, S. Linsinger, R. Pöttgen, Monatsh. Chem. 2011, 142, 1087.CrossrefGoogle Scholar

  • [2]

    S. Engelbert, O. Janka, Intermetallics 2018, 96, 84.CrossrefGoogle Scholar

  • [3]

    C. Benndorf, H. Eckert, O. Janka, Dalton Trans. 2017, 46, 1083.CrossrefGoogle Scholar

  • [4]

    Y. Verbovytskyy, K. Łątka, J. Przewoźnik, V. Kinzhybalo, J. Alloys Compd. 2018, 758, 122.CrossrefGoogle Scholar

  • [5]

    N. Nasri, M. Pasturel, V. Dorcet, B. Belgacem, R. Ben Hassen, O. Tougait, J. Alloys Compd. 2015, 650, 528.CrossrefGoogle Scholar

  • [6]

    R. E. Gladyshevskii, Y. N. Grin, Y. P. Yarmolyuk, Dopov. Akad. Nauk Ukr. RSR, Ser. A 1983, 2, 67.Google Scholar

  • [7]

    O. M. Sichevich, L. P. Komarovskaya, Y. N. Grin, Y. P. Yarmolyuk, R. V. Skolozdra, Ukr. Fiz. Zh. 1984, 29, 1342.Google Scholar

  • [8]

    M. Demchyna, B. Belan, M. Manyako, L. Akselrud, A. Gagor, M. Dzevenko, Y. Kalychak, Intermetallics 2013, 37, 22.CrossrefGoogle Scholar

  • [9]

    M. Dzevenko, A. Hamyk, Y. Tyvanchuk, Y. Kalychak, Cent. Eur. J. Chem. 2013, 11, 604.Google Scholar

  • [10]

    Y. M. Kalychak, V. I. Zaremba, P. Y. Zavalij, Z. Kristallogr. 1993, 208, 380.Google Scholar

  • [11]

    Y. M. Kalychak, J. Alloys Compd. 1999, 291, 80.CrossrefGoogle Scholar

  • [12]

    Y. B. Tyvanchuk, M. Lukachuk, R. Pöttgen, A. Szytula, Y. M. Kalychak, Z. Naturforsch. 2015, 70b, 665.Google Scholar

  • [13]

    R. I. Zaremba, Y. M. Kalychak, U. Ch. Rodewald, R. Pöttgen, V. I. Zaremba, Z. Naturforsch. 2006, 61b, 942.Google Scholar

  • [14]

    O. E. Koretskaya, L. A. Mykhayliv, V. A. Sadov, R. V. Skolozdra, Visn. Lviv. Derzh. Univ., Ser. Khim. 1988, 29, 34.Google Scholar

  • [15]

    L. D. Gulay, M. Wolcyrz, J. Alloys Compd. 2001, 315, 164.CrossrefGoogle Scholar

  • [16]

    F. Canepa, M. Napoletano, M. L. Fornasini, F. Merlo, J. Alloys Compd. 2002, 345, 42.CrossrefGoogle Scholar

  • [17]

    A. V. Morozkin, A. V. Garshev, A. V. Knotko, V. O. Yapaskurt, Y. Mozharivskyj, F. Yuan, J. Yao, R. Nirmala, S. Quezado, S. K. Malik, J. Solid State Chem. 2018, 261, 62.CrossrefGoogle Scholar

  • [18]

    E. V. Murashova, A. I. Tursina, N. G. Bukhanko, S. N. Nesterenko, Z. Kurenbaeva, Y. D. Seropegin, H. Noël, M. Potel, T. Roisnel, D. Kaczorowski, Mater. Res. Bull. 2010, 45, 993.CrossrefGoogle Scholar

  • [19]

    F. Stegemann, O. Janka, Dalton Trans. 2016, 45, 13863.CrossrefGoogle Scholar

  • [20]

    H. Fu, M. X. Wang, Q. Zheng, D. B. Luo, B. H. Teng, J. Appl. Phys. 2012, 112, 103916.CrossrefGoogle Scholar

  • [21]

    E. V. Murashova, A. I. Tursina, Z. Kurenbaeva, H. Noël, Y. D. Seropegin, Chem. Mater. Alloys 2010, 3, 101.Google Scholar

  • [22]

    S. Linsinger, M. Eul, W. Hermes, R.-D. Hoffmann, R. Pöttgen, Z. Naturforsch. 2009, 64b, 1345.Google Scholar

  • [23]

    S. Stein, S. F. Matar, L. Heletta, R. Pöttgen, Solid State Sci. 2018, 82, 70.CrossrefGoogle Scholar

  • [24]

    K. Klepp, E. Parthé, Acta Crystallogr. 1981, 37b, 1500.Google Scholar

  • [25]

    F. Tappe, U. Ch. Rodewald, R.-D. Hoffmann, R. Pöttgen, Z. Naturforsch. 2011, 66b, 559.Google Scholar

  • [26]

    A. Mehta, J. D. Corbett, J. Solid State Chem. 2008, 181, 871.CrossrefGoogle Scholar

  • [27]

    F. Meng, C. Magliocchi, T. Hughbanks, J. Alloys Compd. 2003, 358, 98.CrossrefGoogle Scholar

  • [28]

    P. A. Maggard, J. D. Corbett, J. Am. Chem. Soc. 2000, 122, 10740.CrossrefGoogle Scholar

  • [29]

    F. Meng, T. Hughbanks, Inorg. Chem. 2001, 40, 2482.CrossrefGoogle Scholar

  • [30]

    S. Gupta, J. D. Corbett, Dalton Trans. 2010, 39, 6074.CrossrefGoogle Scholar

  • [31]

    R. Pöttgen, T. Gulden, A. Simon, GIT Labor-Fachzeitschrift 1999, 43, 133.Google Scholar

  • [32]

    D. Kußmann, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 1998, 624, 1727.CrossrefGoogle Scholar

  • [33]

    Pilatus 100K-S Detector System, Technical Specification and Operating Procedure (version 1.7), Dectris, Baden 2011.Google Scholar

  • [34]

    P. J. Becker, P. Coppens, Acta Crystallogr. 1974, A30, 148.Google Scholar

  • [35]

    V. Petříček, M. Dušek, L. Palatinus, Jana2006, The Crystallographic Computing System, Institute of Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic) 2006.Google Scholar

  • [36]

    V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.Google Scholar

  • [37]

    B. J. Beaudry, A. H. Daane, Met. Soc. AIME 1960, 218, 854.Google Scholar

  • [38]

    F. H. Spedding, A. H. Daane, K. W. Herrmann, Acta Crystallogr. 1956, 9, 559.CrossrefGoogle Scholar

  • [39]

    J. Emsley, The Elements, Clarendon Press, Oxford University Press, Oxford, New York, 1998.Google Scholar

  • [40]

    A. W. Hull, Phys. Rev. 1919, 14, 540.Google Scholar

  • [41]

    J. M. Moreau, E. Parthé, D. Paccard, Acta Crystallogr. 1975, B31, 747.Google Scholar

  • [42]

    J. M. Moreau, D. Paccard, E. Parthé, Acta Crystallogr. 1976, B32, 496.Google Scholar

  • [43]

    A. W. Hull, Phys. Rev. 1917, 10, 661.CrossrefGoogle Scholar

  • [44]

    J. Le Roy, J.-M. Moreau, D. Paccard, E. Parthé, Acta Crystallogr. 1977, B33, 3406.Google Scholar

  • [45]

    F. Stegemann, C. Benndorf, T. Bartsch, R. S. Touzani, M. Bartsch, H. Zacharias, B. P. T. Fokwa, H. Eckert, O. Janka, Inorg. Chem. 2015, 54, 10785.CrossrefGoogle Scholar

  • [46]

    F. Eustermann, S. Gausebeck, C. Dosche, M. Haensch, G. Wittstock, O. Janka, Crystals 2018, 8, 169.CrossrefGoogle Scholar

  • [47]

    F. Stegemann, C. Benndorf, Y. Zhang, M. Bartsch, H. Zacharias, B. P. T. Fokwa, H. Eckert, O. Janka, Inorg. Chem. 2017, 56, 1919.CrossrefGoogle Scholar

  • [48]

    C. Benndorf, F. Stegemann, S. Seidel, L. Schubert, M. Bartsch, H. Zacharias, B. Mausolf, F. Haarmann, H. Eckert, R. Pöttgen, O. Janka, Chem. Eur. J. 2017, 23, 4187.CrossrefGoogle Scholar

  • [49]

    F. Stegemann, C. Benndorf, Y. Zhang, M. Bartsch, H. Zacharias, B. P. T. Fokwa, H. Eckert, O. Janka, Z. Anorg. Allg. Chem. 2017, 643, 1379.CrossrefGoogle Scholar

  • [50]

    E. O. Wollan, W. C. Koehler, Phys. Rev. 1955, 100, 545.CrossrefGoogle Scholar

  • [51]

    D. Gignoux, D. Schmitt, J. Alloys Compd. 1995, 225, 423.CrossrefGoogle Scholar

  • [52]

    A. R. Ball, D. Gignoux, D. Schmitt, F. Y. Zhang, M. Reehuis, J. Magn. Magn. Mater. 1992, 110, 343.CrossrefGoogle Scholar

  • [53]

    N. Iwata, K. Honda, T. Shigeoka, Y. Hashimoto, H. Fujii, J. Magn. Magn. Mater. 1990, 90–91, 63.Google Scholar

  • [54]

    R. Kraft, T. Fickenscher, G. Kotzyba, R.-D. Hoffmann, R. Pöttgen, Intermetallics 2003, 11, 111.CrossrefGoogle Scholar

About the article

Received: 2018-07-26

Accepted: 2018-09-04

Published Online: 2018-09-27


Citation Information: Zeitschrift für Naturforschung B, 20180153, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0153.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in