Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Ahead of print

Issues

Facile synthesis of new pyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidin-5(1H)-ones via the tandem intramolecular Pinner–Dimroth rearrangement and their antibacterial evaluation

Nadieh Dorostkar-Ahmadi
  • Department of Chemistry, Mashhad Branch, Islamic Azad University, 9175687119 Mashhad, I.R. Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abolghasem Davoodnia
  • Corresponding author
  • Department of Chemistry, Mashhad Branch, Islamic Azad University, 9175687119 Mashhad, I.R. Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Niloofar Tavakoli-Hoseini
  • Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, 9175687119 Mashhad, I.R. Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hossein Behmadi
  • Department of Chemistry, Mashhad Branch, Islamic Azad University, 9175687119 Mashhad, I.R. Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mahboobeh Nakhaei-Moghaddam
Published Online: 2018-12-07 | DOI: https://doi.org/10.1515/znb-2018-0166

Abstract

Some new 7-alkyl-4,6-dihydropyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidin-5(1H)-ones were prepared through heterocyclization of 6-amino-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles with aliphatic carboxylic acids in the presence of phosphoryl chloride under reflux in high yields. The suggested mechanism involves a tandem intramolecular Pinner–Dimroth rearrangement. The products were characterized on the basis of FT-IR, 1H NMR, and 13C NMR spectral and microanalytical data and evaluated for their antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) using the disk diffusion method.

This article offers supplementary material which is provided at the end of the article.

Keywords: antibacterial; carboxylic acids; Pinner–Dimroth rearrangement; POCl3; pyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidine

References

  • [1]

    Z. U. H. Khan, A. U. Khan, P. Wan, Y. Chen, D. Kong, S. Khan, K. Tahir, Nat. Prod. Res. 2015, 29, 933.Google Scholar

  • [2]

    S. Vazirimehr, A. Davoodnia, S. A. Beyramabadi, M. Nakhaei-Moghaddam, N. Tavakoli-Hoseini, Z. Naturforsch. 2017, 72b, 481.Google Scholar

  • [3]

    A. H. Halawa, A. M. Fouda, A. A. M. Al-Dies, A. M. El-Agrody, Lett. Drug Des. Discovery 2016, 13, 77.Google Scholar

  • [4]

    H. Akrami, M. Safavi, B. F. Mirjalili, M. Dehghani Ashkezari, F. Dadfar, N. Mohaghegh, S. Emami, F. Salehi, H. Nadri, S. K. Ardestani, L. Firoozpour, M. Khoobi, A. Foroumadi, Eur. J. Med. Chem. 2017, 127, 128.Google Scholar

  • [5]

    S. A. F. Rostom, M. A. Shalaby, M. A. El-Demellawy, Eur. J. Med. Chem. 2003, 38, 959.Google Scholar

  • [6]

    N. Uramaru, H. Shigematsu, A. Toda, R. Eyanagi, S. Kitamura, S. Ohta, J. Med. Chem. 2010, 53, 8727.Google Scholar

  • [7]

    N. A. Hamdy, W. M. El-Senousy, Acta. Pol. Pharm. 2013, 70, 99.Google Scholar

  • [8]

    H. M. Faidallah, S. A. F. Rostom, Arch. Pharm. 2017, 350, 1700025.Google Scholar

  • [9]

    E. A. A. El-Meguid, M. M. Ali, Res. Chem. Intermed. 2016, 42, 1521.Google Scholar

  • [10]

    J. W. Tessmann, J. Buss, K. R. Begnini, L. M. Berneira, F. R. Paula, C. M. P. de Pereira, T. Collares, F. K. Seixas, Biomed. Pharmacother. 2017, 94, 37.Google Scholar

  • [11]

    T. D. Penning, J. J. Talley, S. R. Bertenshaw, J. S. Carter, P. W. Collins, S. Docter, M. J. Graneto, L. F. Lee, J. W. Malecha, J. M. Miyashiro, J. Med. Chem. 1997, 40, 1347.Google Scholar

  • [12]

    G. Steinbach, P. M. Lynch, R. K. S. Phillips, M. H. Wallace, E. Hawk, G. B. Gordon, N. Wakabayashi, B. Saunders, Y. Shen, T. Fujimura, L.-K. Su, B. Levin, L. Godio, S. Patterson, M. A. Rodriguez-Bigas, S. L. Jester, K. L. King, M. Schumacher, J. Abbruzzese, R. N. DuBois, W. N. Hittelman, S. Zimmerman, J. W. Sherman, G. Kelloff, New Engl. J. Med. 2000, 342, 1946.Google Scholar

  • [13]

    B. Zhong, X. Cai, S. Chennamaneni, X. Yi, L. Liu, J. J. Pink, A. Dowlati, Y. Xu, A. Zhou, B. Su, Eur. J. Med. Chem. 2012, 47, 432.Google Scholar

  • [14]

    S. C. Abbot, R. J. Billedeau, N. J. Dewdney, T. Gabriel, D. M. Goldstein, K. L. McCaleb, M. Soth, T. A. Trejo-Martin, H. Zecic, Heterocycles 2009, 78, 2811.Google Scholar

  • [15]

    R. Fioravanti, N. Desideri, M. Biava, L. Proietti Monaco, L. Grammatica, M. Yáñez, Bioorg. Med. Chem. Lett. 2013, 23, 5128.Google Scholar

  • [16]

    M. Amina, N. K. Satti, N. M. Al Musayeib, S. Bani, T. Amna, Biomed. Res. 2017, 28, 4316.Google Scholar

  • [17]

    K. Singh, T. Kaur, MedChemComm 2016, 7, 749.Google Scholar

  • [18]

    E. P. D. S. Falcao, S. J. De Melo, R. M. Srivastava, M. T. Catanho, S. C. Nascimento, Eur. J. Med. Chem. 2006, 41, 276.Google Scholar

  • [19]

    H. Atapour-Mashhad, Z. Tayarani-Najaran, A. Davoodnia, R. Moloudi, S. H. Mousavi, Drug Chem. Toxicol. 2011, 34, 271.Google Scholar

  • [20]

    D. Kumar, P. Sharma, H. Singh, K. Nepali, G. K. Gupta, S. K. Jain, F. Ntie-Kang, RSC Adv. 2017, 7, 36977.Google Scholar

  • [21]

    A. Saxena, L. Shastri, V. Sunagar, Synth. Commun. 2017, 47, 1570.Google Scholar

  • [22]

    Q. Bi, W.-W. Ruan, L. Cao, Y.-J. Xu, Biomed. Res. India 2017, 28, 1290.Google Scholar

  • [23]

    M. A. Mar’yasov, V. P. Sheverdov, V. V. Davydova, O. E. Nasakin, Pharm. Chem. J. 2017, 50, 798.Google Scholar

  • [24]

    R. Chikhale, S. Thorat, R. K. Choudhary, N. Gadewal, P. Khedekar, Bioorg. Chem. 2018, 77, 84.Google Scholar

  • [25]

    A. Pai, B. S. Jayashree, R. S. Jeyaprakash, S. G. Kini, R. Lobo, Lat. Am. J. Pharm. 2017, 36, 1568.Google Scholar

  • [26]

    S. N. R. Mule, S. Nurbhasha, J. N. Kolla, S. S. Jadav, V. Jayaprakash, L. R. Bhavanam, H. B. Bollikolla, Med. Chem. Res. 2016, 25, 2534.Google Scholar

  • [27]

    J.-L. Tian, G.-D. Yao, Y.-Y. Zhang, B. Lin, Y. Zhang, L.-Z. Li, X.-X. Huang, S.-J. Song, Bioorg. Chem. 2018, 79, 355.Google Scholar

  • [28]

    C. D. Donner, M. Gill, L. M. Tewierik, Molecules 2004, 9, 498.Google Scholar

  • [29]

    R. Qingyun, T. Xiaosong, H. Hongwu, Curr. Org. Synth. 2011, 8, 752.Google Scholar

  • [30]

    A. H. Shamroukh, M. E. A. Zaki, E. M. H. Morsy, F. M. Abdel-Motti, F. M. E. Abdel-Megeid, Arch. Pharm. Chem. Life Sci. 2007, 340, 236.Google Scholar

  • [31]

    A. H. Shamroukh, M. E. A. Zaki, E. M. H. Morsy, F. M. Abdel-Motti, F. M. E. Abdel-Megeid, Arch. Pharm. Chem. Life Sci. 2007, 340, 345.Google Scholar

  • [32]

    M. E. A. Zaki, Molecules 1998, 3, 7179.Google Scholar

  • [33]

    H. Hegde, C. Ahn, P. Waribam, N. S. Shetty, J. Korean Chem. Soc. 2018, 62, 87.Google Scholar

  • [34]

    M. Bakherad, A. Keivanloo, M. Gholizadeh, R. Doosti, M. Javanmardi, Res. Chem. Intermed. 2017, 43, 1013.Google Scholar

  • [35]

    M. Roshani, A. Davoodnia, M. Sh. Hedayat, M. Bakavoli, Phosphorus Sulfur Silicon Relat. Elem. 2004, 179, 1153.Google Scholar

  • [36]

    A. Davoodnia, M. Bakavoli, M. Bashash, M. Roshani, R. Zhiani, Turk. J. Chem. 2007, 31, 599.Google Scholar

  • [37]

    A. Davoodnia, R. Zhiani, N. Tavakoli-Hoseini, Monatsh. Chem. 2008, 139, 1405.Google Scholar

  • [38]

    A. Davoodnia, M. Bakavoli, S. Mohseni, N. Tavakoli-Hoseini, Monatsh. Chem. 2008, 139, 963.Google Scholar

  • [39]

    A. Davoodnia, M. Rahimizadeh, H. Atapour-Mashhad, N. Tavakoli-Hoseini, Heteroat. Chem. 2009, 20, 346.Google Scholar

  • [40]

    M. Khashi, A. Davoodnia, J. Chamani, Phosphorus Sulfur Silicon Relat. Elem. 2014, 189, 839.Google Scholar

  • [41]

    M. Khashi, A. Davoodnia, V. S. Prasada Rao Lingam, Res. Chem. Intermed. 2015, 41, 5731.Google Scholar

  • [42]

    S. Vazirimehr, A. Davoodnia, M. Nakhaei-Moghaddam, N. Tavakoli-Hoseini, Heterocycl. Commun. 2017, 23, 65.Google Scholar

  • [43]

    N. Hosseininasab, A. Davoodnia, F. Rostami-Charati, N. Tavakoli-Hoseini, A. Khojastehnezhad, J. Heterocycl. Chem. 2018, 55, 161.Google Scholar

  • [44]

    M. Fattahi, A. Davoodnia, M. Pordel, S. A. Beyramabadi, N. Tavakoli-Hoseini, Z. Naturforsch. 2018, 73b, 557.Google Scholar

  • [45]

    Y. Zou, Y. Hu, H. Liu, D.-Q. Shi, J. Heterocycl. Chem. 2013, 50, 1174.Google Scholar

  • [46]

    I. S. A. Hafiz, M. A. M. A. Reheim, S. M. Baker, M. M. Ramiz, J. Chem. Soc. Pak. 2014, 36, 1133.Google Scholar

  • [47]

    J. H. Tang, D. X. Shi, L. J. Zhang, Q. Zhang, J. R. Li, Synth. Commun. 2010, 40, 632.Google Scholar

  • [48]

    H. Chai, J. Li, L. Yang, H. Lu, Z. Qi, D. Shi, RSC Adv. 2014, 4, 44811.Google Scholar

  • [49]

    F. Khoramdelan, A. Davoodnia, M. R. Bozorgmehr, M. Ebrahimi, Russ. J. Gen. Chem. 2017, 87, 2961.Google Scholar

  • [50]

    N. Karimi, A. Davoodnia, M. Pordel, Heterocycl. Commun. 2018, 24, 31.Google Scholar

  • [51]

    Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing Twentieth Informational Supplement, Clinical and Laboratory Standards Institute, Wayne, PA, CLSI document M100-S20. Available at: http://www.clsi.org (accessed 3 August 2018).

About the article

Corresponding author: Abolghasem Davoodnia, Department of Chemistry, Mashhad Branch, Islamic Azad University, 9175687119 Mashhad, I.R. Iran, e-mail: adavoodnia@yahoo.com


Received: 2018-08-03

Accepted: 2018-10-31

Published Online: 2018-12-07


Citation Information: Zeitschrift für Naturforschung B, 20180166, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0166.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in