Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Ahead of print

Issues

Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)

Karlheinz Sünkel
  • Corresponding author
  • Department of Chemistry, Ludwig-Maximilians University of Munich, Butenandtstraße 9 81377, Munich, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dietmar Reimann
  • Department of Chemistry, Ludwig-Maximilians University of Munich, Butenandtstraße 9 81377, Munich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrick Nimax
  • Department of Chemistry, Ludwig-Maximilians University of Munich, Butenandtstraße 9 81377, Munich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-11-24 | DOI: https://doi.org/10.1515/znb-2018-0175

Abstract

The reaction of the 3d transition metal dichlorides MCl2 (M=Mn, Fe, Co, Ni, Cu, Zn) with the silver salts of substituted tetracyanocyclopentadienides Ag+ [C5(CN)4X] (X=CN, H, NH2 NO2) gives the complexes [M(MeOH/H2O)4{C5(CN)4)X}2]. Nine of these complexes were characterized by X-ray diffraction and it shows that they all are mononuclear with an octahedral M(N)2(O)4 coordination sphere. In the structures, extensive hydrogen bonding leads to dense three-dimensional network structures.

Keywords: 3d metals; crystal structures; cyanocyclopentadienides

Dedicated to: Professor Wolfgang Bensch on the occasion of his 65th birthday.

References

  • [1]

    D. R. Turner, A. S. R. Chesman, K. S. Murray, G. B. Deacon, S. R. Batten, Chem. Commun. 2011, 47, 10189.Google Scholar

  • [2]

    S. Benmansour, C. Atmani, F. Setifi, S. Triki, M. Marchivie, C. J. Gómez-García, Coord. Chem. Rev. 2010, 254, 1468.Google Scholar

  • [3]

    S. R. Batten, K. S. Murray. Coord. Chem. Rev. 2003, 246, 103.Google Scholar

  • [4]

    S. R. Batten, B. F. Hoskins, B. Moubaraki, K. S. Murray, R. Robson, J. Chem. Soc. Dalton Trans. 1999, 2977.Google Scholar

  • [5]

    O. Reckeweg, A. Schulz, F. J. DiSalvo, Z. Naturforsch. 2015, 70b, 177.Google Scholar

  • [6]

    C. Nitschke, M. Köckerling, Z. Anorg. Allg. Chem. 2009, 635, 503.Google Scholar

  • [7]

    C. Nitschke, M. Köckerling, Inorg. Chem. 2011, 50, 4313.Google Scholar

  • [8]

    S. Triki, J. S. Pala, M. Decoster, P. Molinié, L. Toupet, Angew. Chem. Int. Ed. 1999, 38, 113.Google Scholar

  • [9]

    A. M. Kutasi, D. R. Turner, P. Jensen, B. Moubaraki, S. R. Batten, K. S. Murray, Inorg. Chem. 2011, 50, 6673.Google Scholar

  • [10]

    J. A. Schlueter, U. Geiser, J. L. Manson, Acta Crystallogr. 2003, C59, m1.Google Scholar

  • [11]

    E. Lefebvre, F. Conan, N. Cosquer, J.-M. Kerbaol, M. Marchivie, J. Sala-Pala, M. M. Kubicki, E. Vigier, C. J. Gómez-García, New J. Chem. 2006, 30, 1197.Google Scholar

  • [12]

    Q. Li, Y. Wang, P. Yan, G. Hou, G. Li, Inorg. Chim. Acta 2014, 413, 32.Google Scholar

  • [13]

    S. I. Gurskiy, V. A. Tafeenko, CrystEngComm 2012, 14, 2721.Google Scholar

  • [14]

    J. C. Bullinger, D. M. Eichhorn, Inorg. Chim. Acta 2009, 362, 4510.Google Scholar

  • [15]

    O. W. Webster, United States Patent 3,835,943, 1974.Google Scholar

  • [16]

    O. W. Webster, J. Am. Chem. Soc. 1966, 88, 4055.Google Scholar

  • [17]

    R. E. Christopher, L. M. Venanzi, Inorg. Chim. Acta 1973, 7, 489.Google Scholar

  • [18]

    R. J. Less, T. C. Wilson, M. McPartlin, P. T. Wood, D. S. Wright, Chem. Commun. 2011, 47, 10007.Google Scholar

  • [19]

    K. Sünkel, D. Reimann, Z. Naturforsch. 2013, 68b, 546.Google Scholar

  • [20]

    P. R. Nimax, K. Sünkel, ChemistrySelect 2018, 3, 3330.Google Scholar

  • [21]

    L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837.Google Scholar

  • [22]

    C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van derStreek, J. Appl. Crystallogr. 2006, 39, 453.Google Scholar

  • [23]

    A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.Google Scholar

  • [24]

    G. M. Sheldrick, ActaCrystallogr. 2008, A64, 112.Google Scholar

  • [25]

    A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. J. Spagna, J. Appl. Crystallogr. 1999, 32, 115.Google Scholar

About the article

Received: 2018-08-18

Accepted: 2018-10-31

Published Online: 2018-11-24


Citation Information: Zeitschrift für Naturforschung B, 20180175, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0175.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in