Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Volume 73, Issue 10

Issues

Analysis of two [2]catenanes based on electron densities from invariom refinement and results from DFT calculations

Peter Luger
  • Corresponding author
  • Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 36a, Berlin D-14195, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Birger Dittrich
  • Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Düsseldorf D-40225, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan Mebs
  • Institut für Experimentalphysik, Freie Universität Berlin, Arnimalle 14, Berlin D-14195, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexandra M.Z. Slawin
  • School of Chemistry, University of St. Andrews, Purdie Building, St. Andrews, Fife KY16 9ST, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David A. Leigh
Published Online: 2018-09-24 | DOI: https://doi.org/10.1515/znb-2018-0179

Abstract

Catenanes are of considerable interest as potential building blocks for molecular machines. The simplest [2]catenanes, Hopf links, consist of two macrocycles that are mechanically interlocked. This unusual architecture cannot be opened without breaking at least one covalent bond. Based on these structural characteristics, unusual properties on Hirshfeld or electrostatic potential surfaces could be expected. For a comparison of their structural and electronic properties, the electron densities (EDs) of two [2]catenanes, coded H22 and H4L7 in the original papers, were examined after application of the invariom formalism, relying on X-ray diffraction data collected earlier. The obtained electron density distributions were subjected to an analysis using the QTAIM formalism to yield bond and atomic properties. Moreover, molecular Hirshfeld surfaces and electrostatic potentials (ESP) were calculated. There are different types of intra- and intermolecular interactions in these two [2]catenanes. In addition to classical N–H···N and C–H···O hydrogen bonds, various types of π···π interactions in H22 and in H4L7 exist. Most of them are verified by local ED concentrations visible on the corresponding Hirshfeld surfaces, except for the parallel π···π interactions in H22, which are either too weak or too diffuse to generate an ED signal on the Hirshfeld surface between the contributing aromatic rings. The electrostatic potentials (ESPs) were calculated and displayed on molecular surfaces. The interaction in the cavity of one macrocycle with the penetrated fragment of the second one was examined and it was found that corresponding to the above-mentioned contacts attractive and repulsive interactions exist. Additionally the ED was examined using results of density functional calculations, including non-covalent interaction index (NCI) and electron localizability indicator (ELI-D) surface analysis, complementing experimental findings.

This article offers supplementary material which is provided at the end of the article.

Keywords: catenanes; DFT calculations; electron density; invariom formalism; molecular machines

References

  • [1]

    G. Gil-Ramirez, D. A. Leigh, A. J. Stephens, Angew. Chem. Int. Ed. 2015, 54, 6110.CrossrefGoogle Scholar

  • [2]

    Press Release of the Nobel Committee, October 2016, http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/press.html. See also D. A. Leigh, Angew. Chem. Int. Ed. 2016, 55, 14506.

  • [3]

    F. H. Allen, Acta Crystallogr. 2002, B58, 380.Google Scholar

  • [4]

    B. Dittrich, T. Koritsanszky, P. Luger, Angew. Chem. Int. Ed. 2004, 43, 2718.CrossrefGoogle Scholar

  • [5]

    B. Dittrich, C. B. Hübschle, K. Pröpper, F. Dietrich, T. Stolper, J. J. Holstein, Acta Crystallogr. 2013, B69, 91.Google Scholar

  • [6]

    D. A. Leigh, P. J. Lusby, A. M. Z. Slawin, D. B. Walker, Angew. Chem. Int. Ed. 2005, 44, 4557.CrossrefGoogle Scholar

  • [7]

    D. A. Leigh, P. J. Lusby, R. T. McBurny, A. Morelli, A. M. Z. Slawin, A. R. Thomson, D. B. Walker, J. Am. Chem. Soc. 2009, 131, 3762.CrossrefGoogle Scholar

  • [8]

    C. K. Johnson, Ortep, Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Rep. ORNL-6895, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 1965.Google Scholar

  • [9]

    A. L. Spek, Acta Crystallogr. 2009, D65, 148.Google Scholar

  • [10]

    E. Keller, J. S. Pierrard, Schakal99, Albert-Ludwigs University, Freiburg, Germany, 1999.Google Scholar

  • [11]

    J. J. McKinnon, A. S. Mitchell, M. A. Spackman, Chem. Eur. J. 1998, 4, 2136.CrossrefGoogle Scholar

  • [12]

    M. A. Spackman, J. J. McKinnon, D. Jayatilaka, CrystEngComm. 2008, 10, 377.Google Scholar

  • [13]

    C. B. Hübschle, P. Luger, J. Appl. Crystallogr. 2006, 39, 901.CrossrefGoogle Scholar

  • [14]

    A. Volkov, P. Macchi, L. J. Farrugia, C. Gatti, P. R. Mallinson, T. Richter, T. Koritsánszky, XD2006, A computer program for multipole refinement, QTAIM analysis of charge densities and evaluation of intermolecular energies from experimental and theoretical structure factors, University of Buffalo, NY (USA); University of Milano, (Italy); University of Glasgow, (UK); CNRISTM, Milano (Italy); Middle Tennessee State University, TN, USA, 2006.Google Scholar

  • [15]

    R. F. W. Bader, Atoms in Molecules – A Quantum Theory, Clarendon Press, Oxford, 1994.Google Scholar

  • [16]

    A. Volkov, C. Gatti, Y. Abramov, P. Coppens, Acta Crystallogr. 2000, A56, 252.Google Scholar

  • [17]

    A. Volkov, H. F. King, P. Coppens, L. J. Farrugia, Acta Crystallogr. 2006, A62, 400.Google Scholar

  • [18]

    A. D. Becke, J. Chem. Phys. 1993, 98, 5648.CrossrefGoogle Scholar

  • [19]

    C. Lee, W. Yang, R. G. Parr, Phys. Rev. 1988, B37, 785.Google Scholar

  • [20]

    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.CrossrefGoogle Scholar

  • [21]

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 (revision B.01), Gaussian, Inc., Wallingford, CT, USA, 2010.Google Scholar

  • [22]

    F. Biegler-König, J. Schönbohm, D. A. Bayles, J. Comput. Chem. 2001, 22, 545.CrossrefGoogle Scholar

  • [23]

    E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am.Chem. Soc. 2010, 132, 6498.CrossrefGoogle Scholar

  • [24]

    J. Contreras-García, E. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. Beratan, W. Yang, J. Chem. Theor. Comp. 2011, 7, 625.CrossrefGoogle Scholar

  • [25]

    M. Kohout, Int. J. Quantum Chem. 2004, 97, 651.CrossrefGoogle Scholar

  • [26]

    M. Kohout; F. R. Wagner, Y. Grin, Theor. Chem. Acc. 2008, 119, 413.CrossrefGoogle Scholar

  • [27]

    M. Kohout, DGRID-4.6, Radebeul, Germany, 2015.Google Scholar

  • [28]

    P. de Silva, C. Corminboeuf, J. Chem. Theory Comput. 2014, 10, 3745.CrossrefGoogle Scholar

  • [29]

    N. Gillet, R. Chaudret, I. Contreras-García, W. Yang, B. Silvi, J.-P. Piquemal, J. Chem. Theor. Comput. 2012, 8, 3993.CrossrefGoogle Scholar

  • [30]

    D. Fang, R. Chaudret, J.-P. Piquemal, G. A. Cisneros, J. Chem. Theor. Comput. 2013, 9, 2156.CrossrefGoogle Scholar

  • [31]

    S. Mebs, Chem. Phys. Lett. 2016, 651, 172.CrossrefGoogle Scholar

  • [32]

    T. Koritsanszky, R. Flaig, D. Zobel, H. G. Krane, W. Morgenroth, P. Luger, Science 1998, 279, 356.CrossrefGoogle Scholar

  • [33]

    R. Flaig, T. Koritsanszky, R. Soyka, L. Häming, P. Luger, Angew. Chem. Int. Ed. 2001, 40, 355.CrossrefGoogle Scholar

  • [34]

    C. B. Hübschle, P. Luger, B. Dittrich, J. Appl. Crystallogr. 2007, 40, 623.CrossrefGoogle Scholar

About the article

Received: 2018-08-24

Accepted: 2018-08-31

Published Online: 2018-09-24

Published in Print: 2018-10-25


Citation Information: Zeitschrift für Naturforschung B, Volume 73, Issue 10, Pages 677–687, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0179.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in