Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year

IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

See all formats and pricing
More options …
Ahead of print


Rare earth-copper-magnesium intermetallics: crystal structure of CeCuMg, magnetocaloric effect of GdCuMg and physical properties of the Laves phases RECu4Mg (RE=Sm, Gd, Tb, Tm)

Sebastian Stein
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, Münster 48149, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lukas Heletta
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, Münster 48149, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Theresa Block
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, Münster 48149, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rainer Pöttgen
  • Corresponding author
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, Münster 48149, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-28 | DOI: https://doi.org/10.1515/znb-2018-0191


The intermetallic magnesium compounds CeCuMg and GdCuMg as well as the ternary Laves phases RECu4Mg (RE=Sm, Gd–Tm) were synthesized from the elements by different annealing sequences in high-frequency and muffle furnaces using niobium ampoules as crucibles. All samples were characterized through the lattice parameters using X-ray powder diffraction (Guinier technique). Two structures were refined from single-crystal X-ray diffractometer data: a=764.75(6), c=414.25(4) pm, space group P6̅2m, wR2=0.0389, 338 F2 values, 15 parameters for CeCuMg (ZrNiAl type) and a=723.18(2) pm, space group F4̅3m, wR2=0.0818, 91 F2 values, eight parameters for Gd1.06(3)Cu4Mg0.94(3) (MgCu4Sn type). The Laves phase shows a small homogeneity range (Gd/Mg mixing). An investigation of the magnetocaloric effect (MCE) of ferromagnetic GdCuMg (ZrNiAl type; TC=82 K) revealed a magnetic entropy change of ΔSM=6.5 J kg−1 K−1 and a relative cooling power of RCP=260 J kg−1 for a field change from 0 to 70 kOe, classifying GdCuMg as a moderate magnetocaloric material for the T=80 K region. Of the Laves phases RECu4Mg, SmCu4Mg shows van-Vleck paramagnetism above a Néel temperature of 10.8(5) K, whereas GdCu4Mg and TbCu4Mg undergo antiferromagnetic phase transitions at about 48 and 30 K, respectively. TmCu4Mg shows Curie-Weiss behavior in the entire temperature range. The electrical resistivity of SmCu4Mg and the specific heat capacity of GdCu4Mg were measured for further characterization.

Keywords: crystal structure; magnesium; magnetic properties; magnetocaloric effect; rare earth compounds


  • [1]

    K. U. Kainer (Ed.), Magnesium Alloys and Their Applications, Wiley-VCH, Weinheim, 2000.Google Scholar

  • [2]

    C. Kammer, Magnesium Taschenbuch, Aluminium-Verlag, Düsseldorf, 2000.Google Scholar

  • [3]

    S. C. Wang, M. J. Starink, Int. Mater. Rev. 2005, 50, 193.CrossrefGoogle Scholar

  • [4]

    N. Hort, Y. Huang, K. U. Kainer, Adv. Eng. Mater. 2006, 8, 235.CrossrefGoogle Scholar

  • [5]

    L. Schlapbach, A. Züttel, Nature 2002, 414, 353.Google Scholar

  • [6]

    H. Zhang, X. Zheng, X. Tian, Y. Liu, X. Li, Progr. Nat. Sci.: Mater. Int. 2017, 27, 50.CrossrefGoogle Scholar

  • [7]

    J.-L. Bobet, E. Gaudin, S. Couillaud in New Ternary Intermetallics Based on Magnesium for Hydrogen Storage: The Fishing Approach in Nanoenergy – Nanotechnology Applied for Energy Production, (Eds.: F. L. Souza, E. R. Leite), 2nd edition, Springer, Berlin, 2018.Google Scholar

  • [8]

    M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, Biomaterials 2006, 27, 1728.CrossrefGoogle Scholar

  • [9]

    D. Persaud-Sharma, A. McGoron, J. Biomim. Biomater. Tissue Eng. 2012, 12, 25.CrossrefGoogle Scholar

  • [10]

    G. E. J. Poinern, S. Brundavanam, D. Fawcett, Am. J. Biomed. Eng. 2012, 2, 218.Google Scholar

  • [11]

    J. Chen, L. Tan, K. Yang, Mater. Techn. 2016, 31, 681.CrossrefGoogle Scholar

  • [12]

    B. Heying, R.-D. Hoffmann, R. Pöttgen, Z. Naturforsch. 2005, 60b, 491.Google Scholar

  • [13]

    S. G. Kim, A. Inoue, T. Masumoto, Mater. Trans. JIM 1990, 31, 929.CrossrefGoogle Scholar

  • [14]

    A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, Mater. Trans. JIM 1992, 33, 937.CrossrefGoogle Scholar

  • [15]

    A. Inoue, Acta Mater. 2000, 48, 279.CrossrefGoogle Scholar

  • [16]

    X. K. Xi, R. J. Wang, D. Q. Zhao, M. X. Pan, W. H. Wang, J. Non-Cryst. Solids 2004, 344, 105.CrossrefGoogle Scholar

  • [17]

    H. Ma, Q. Zheng, J. Xu, Y. Li, E. Ma, J. Mater. Res. 2005, 20, 2252.CrossrefGoogle Scholar

  • [18]

    S. De Negri, P. Solokha, A. Saccone, V. Pavlyuk, Intermetallics 2009, 17, 614.CrossrefGoogle Scholar

  • [19]

    S. De Negri, M. Giovannini, A. Saccone, J. Alloys Compd. 2007, 427, 134.CrossrefGoogle Scholar

  • [20]

    B. Marciniak, V. Pavlyuk, E. Rozycka-Sokolowska, L. Karwowski, Z. Bak, J. Alloys Compd. 2015, 652, 254.CrossrefGoogle Scholar

  • [21]

    P. Solokha, V. Pavlyuk, S. De Negri, A. Saccone, O. Zelinska, Xth International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, September 17–20, 2007, Abstract O3.Google Scholar

  • [22]

    S. De Negri, A. Saccone, P. Rogl, G. Giester, Intermetallics 2008, 16, 1285.CrossrefGoogle Scholar

  • [23]

    U. Ch. Rodewald, B. Chevalier, R. Pöttgen, J. Solid State Chem. 2007, 180, 1720.CrossrefGoogle Scholar

  • [24]

    R. Pöttgen, A. Fugmann, R.-D. Hoffmann, U. Ch. Rodewald, D. Niepmann, Z. Naturforsch. 2000, 55b, 155.Google Scholar

  • [25]

    R. Mishra, R.-D. Hoffmann, R. Pöttgen, Z. Naturforsch. 2001, 56b, 239.Google Scholar

  • [26]

    G. Kotzyba, R. Mishra, R. Pöttgen, Z. Naturforsch. 2003, 58b, 497.Google Scholar

  • [27]

    S. Linsinger, W. Hermes, M. Eul, R. Pöttgen, J. Appl. Phys. 2010, 108, 043903.CrossrefGoogle Scholar

  • [28]

    W. Hermes, F. M. Schappacher, R. Pöttgen, Z. Naturforsch. 2010, 65b, 1516.Google Scholar

  • [29]

    W. Hermes, S. Linsinger, S. Rayaprol, S. Tuncel, R.-D. Hoffmann, R. K. Kremer, O. Jepsen, R. Pöttgen, J. Supercond. Novel Magn. 2011, 24, 1585.CrossrefGoogle Scholar

  • [30]

    S. Stein, L. Heletta, R. Pöttgen, Z. Naturforsch. 2017, 72b, 511.Google Scholar

  • [31]

    V. V. Kinzhibalo, A. T. Tyvanchuk, E. V. Meĺnyk, R. M. Rykhaĺ, Visn. Lviv. Derzh. Univ. Ser. Khim. 1988, 29, 17.Google Scholar

  • [32]

    P. Rizzi, M. Satta, S. Enzo, K. Georgarakis, A. R. Yavari, M. Baricco, J. Phys.: Conf. Ser. 2009, 144, 012057.Google Scholar

  • [33]

    A. Simon, R. Pöttgen, T. Gulden, GIT Labor-Fachz. 1999, 43, 133.Google Scholar

  • [34]

    D. Kußmann, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 1998, 624, 1727.CrossrefGoogle Scholar

  • [35]

    L. J. van der Pauw, Philips Res. Rep. 1958, 13, 1.Google Scholar

  • [36]

    A. C. Larson, D. T. Cromer, Acta Crystallogr. 1961, 14, 545.CrossrefGoogle Scholar

  • [37]

    G. Berger, A. Weiss, J. Less-Common Met. 1988, 142, 109.CrossrefGoogle Scholar

  • [38]

    M. Giovanni, E. Bauer, G. Hilscher, R. Lackner, H. Michor, A. Saccone, Physica B 2006, 378–380, 831.Google Scholar

  • [39]

    K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1997, 10, 73.Google Scholar

  • [40]

    V. V. Shtender, R. V. Denys, V. Paul-Boncour, A. B. Riabov, I. Y. Zavaliy, J. Alloys Compd. 2014, 603, 7.CrossrefGoogle Scholar

  • [41]

    V. V. Shtender, R. V. Denys, V. Paul-Boncour, Yu. V. Verbovytskyy, I. Yu. Zavaliy, J. Alloys Compd. 2015, 639, 526.CrossrefGoogle Scholar

  • [42]

    J. L. Sarrao, C. D. Immer, Z. Fisk, C. H. Booth, E. Figueroa, J. M. Lawrence, R. Modler, A. L. Cornelius, M. F. Hundley, G. H. Kwei, J. D. Thompson, F. Bridges, Phys. Rev. B 1999, 59, 6855.CrossrefGoogle Scholar

  • [43]

    V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.Google Scholar

  • [44]

    S. Linsinger, M. Eul, C. Schwickert, R. Decourt, B. Chevalier, U. Ch. Rodewald, J.-L. Bobet, R. Pöttgen, Intermetallics 2011, 19, 1579.CrossrefGoogle Scholar

  • [45]

    H. D. Flack, G. Bernadinelli, Acta Crystallogr. 1999, 55A, 908.Google Scholar

  • [46]

    H. D. Flack, G. Bernadinelli, J. Appl. Crystallogr. 2000, 33, 1143.CrossrefGoogle Scholar

  • [47]

    S. Parsons, H. D. Flack, T. Wagner, Acta Crystallogr. B 2013, 69, 249.CrossrefGoogle Scholar

  • [48]

    L. J. van der Pauw, Philips Techn. Rev. 1958, 20, 220.Google Scholar

  • [49]

    A. Arrott, Phys. Rev. 1957, 108, 1394.CrossrefGoogle Scholar

  • [50]

    K. A. Gschneidner Jr., V. K. Pecharsky, A. O. Tsokol, Rep. Progr. Phys. 2005, 68, 1479.CrossrefGoogle Scholar

  • [51]

    L. Li, Chin. Phys. B 2016, 25, 037502.CrossrefGoogle Scholar

  • [52]

    P. I. Krypyakevich, V. Ya. Markiv, E. V. Melnyk, Dopov. Akad. Nauk. Ukr. RSR Ser. A 1967, 750.Google Scholar

  • [53]

    A. E. Dwight, M. H. Mueller, R. A. Conner, Jr., J. W. Downey, H. Knott, Trans. Met. Soc. AIME 1968, 242, 2075.Google Scholar

  • [54]

    M. F. Zumdick, R.-D. Hoffmann, R. Pöttgen, Z. Naturforsch. 1999, 54b, 45.Google Scholar

  • [55]

    E. I. Gladyshevskii, P. I. Kripiakevich, M. J. Tesliuk, Dokl. AN SSSR 1952, 85, 81.Google Scholar

  • [56]

    K. Osamura, Y. Murakami, J. Less-Common Met. 1978, 60, 311.CrossrefGoogle Scholar

  • [57]

    R. Ferro, A. Saccone, Intermetallic Chemistry, Elsevier, Amsterdam, 2008.Google Scholar

  • [58]

    R. Pöttgen, D. Johrendt, Intermetallics, De Gruyter, Berlin, 2014.Google Scholar

  • [59]

    Y. Grin (Ed.), Crystal Chemistry of Intermetallic Compounds, Z. Kristallogr. 2006, 221, 301.Google Scholar

  • [60]

    S. K. Banerjee, Phys. Lett. 1964, 12, 16.Google Scholar

  • [61]

    Q. Zhang, J. H. Cho, B. Li, W. J. Hu, Z. D. Zhang, Appl. Phys. Lett. 2009, 94, 182501.CrossrefGoogle Scholar

  • [62]

    Y. Zhang, G. Wilde, X. Li, Z. Ren, L. Li, Intermetallics 2015, 65, 61.CrossrefGoogle Scholar

  • [63]

    L. Q. Yan, J. Shen, Y. X. Li, F. W. Wang, Z. W. Jiang, F. X. Hu, J. R. Sun, B. G. Shen, Appl. Phys. Lett. 2007, 90, 262502.CrossrefGoogle Scholar

  • [64]

    T. Tohei, H. Wada, J. Magn. Magn. Mater. 2004, 280, 101.CrossrefGoogle Scholar

  • [65]

    H. C. Hamaker, L. D. Woolf, H. B. MacKay, Z. Fisk, M. B. Maple, Solid State Commun. 1979, 32, 289.CrossrefGoogle Scholar

  • [66]

    A. M. Stewart, Phys. Rev. B 1972, 6, 1985.CrossrefGoogle Scholar

  • [67]

    S. Seidel, O. Niehaus, S. F. Matar, O. Janka, B. Gerke, U. Ch. Rodewald, R. Pöttgen, Z. Naturforsch. 2014, 69b, 1105.Google Scholar

  • [68]

    S. Stein, L. Heletta, R. Pöttgen, J. Solid State Chem. 2017, 253, 184.CrossrefGoogle Scholar

  • [69]

    H. Lueken, Magnetochemie, Teubner, Stuttgart, 1999.Google Scholar

  • [70]

    K. Łątka, Z. Tomkowicz, R. Kmieć, A. W. Pacyna, R. Mishra, T. Fickenscher, R.-D. Hoffmann, R. Pöttgen, H. Piotrowski, J. Solid State Chem. 2002, 168, 331.CrossrefGoogle Scholar

  • [71]

    K. Łątka, R. Kmieć, A. W. Pacyna, T. Fickenscher, R.-D. Hoffmann, R. Pöttgen, Solid State Sci. 2004, 6, 301.CrossrefGoogle Scholar

  • [72]

    F. Canepa, S. Cirafici, F. Merlo, M. Pani, C. Ferdeghini, J. Magn. Magn. Mater. 1999, 195, 646.CrossrefGoogle Scholar

About the article

Received: 2018-09-04

Accepted: 2018-09-18

Published Online: 2018-09-28

Citation Information: Zeitschrift für Naturforschung B, 20180191, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0191.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in