Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Ahead of print

Issues

RhSn3 and the Modifications of RhSn4 – Structure and 119Sn Mössbauer spectroscopic characterization

Thomas Fickenscher
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan Lösel
  • Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Harald Hillebrecht
  • Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jutta Kösters
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Theresa Block
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gunter Heymann
  • Institut für Allgemeine, Anorganische und Theoretische Chemie, Universität Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hubert Huppertz
  • Institut für Allgemeine, Anorganische und Theoretische Chemie, Universität Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rainer Pöttgen
  • Corresponding author
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-04 | DOI: https://doi.org/10.1515/znb-2018-0236

Abstract

Single crystals of the high-temperature modification of RhSn4 were obtained from a tin flux (1:20 molar ratio; final annealing at 920 K; dissolution of the tin matrix in 2N HCl). The structure was refined from single-crystal X-ray diffractometer data: I41/acd, a=629.73(5), c=2288.36(18) pm, wR2=0.0382, 447 F2 values and 14 variables. β-RhSn4 is isotypic with β-IrSn4. The rhodium atoms have slightly distorted square-antiprismatic tin coordination with Rh–Sn distances of 4×273.4 and 4×274.1 pm. The RhSn8 units are condensed via common edges to layers that are staggered with respect to each other and stacked in ABCD sequence. A 119Sn Mössbauer spectroscopic characterization of ß-RhSn4 and the stannides RhSn3 and α-RhSn4 shows the typical isomer shifts for transition metal stannides. Only for α-RhSn4 the three crystallographically independent tin sites could be resolved, a consequence of the different s-electron density. Treatment of α-RhSn4 under high-pressure (up to 10 GPa)/high-temperature (up to T=1370 K) conditions leads to decomposition into Rh1.5Sn, RhSn2 and β-Sn.

Keywords: crystal structure; Mössbauer spectroscopy; rhodium; stannide

References

  • [1]

    P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2017/18), ASM International®, Materials Park, Ohio (USA), 2017.Google Scholar

  • [2]

    R. Pöttgen, Z. Naturforsch. 2006, 61b, 677.Google Scholar

  • [3]

    M. G. Kanatzidis, R. Pöttgen, W. Jeitschko, Angew. Chem. Int. Ed. 2005, 44, 6996.Google Scholar

  • [4]

    W. G. Moffat (Ed.), The Handbook of Binary Phase Diagrams, Genium Publishing Corporation, New York, 1984.Google Scholar

  • [5]

    T. B. Massalski, Binary Alloy Phase Diagrams, Vols. 1 and 2, American Society for Metals, Ohio, 1986.Google Scholar

  • [6]

    J. Shen, Y. C. Chan, S. Y. Liu, Acta Mater. 2009, 57, 5196.Google Scholar

  • [7]

    C.-H. Wang, K.-T. Li, P.-Y. Huang, J. Mater. Sci. 2016, 51, 7309.Google Scholar

  • [8]

    A. Echarri, M. Spadoni, Cryogenics 1971, 11, 274.Google Scholar

  • [9]

    X. Xu, Supercond. Sci. Technol. 2017, 30, 093001.Google Scholar

  • [10]

    V. H. Tran, Z. Bukowski, P. Wiśniewski, L. M. Tran, A. J. Zaleski, J. Phys.: Condens. Matter 2013, 25, 155701.Google Scholar

  • [11]

    D. J. Poutcharovsky, K. Yvon, E. Parthé, J. Less-Common Met. 1975, 40, 139.Google Scholar

  • [12]

    Q. D. Gibson, D. Evtushinsky, A. N. Yaresko, V. B. Zabolotnyy, M. N. Ali, M. K. Fuccillo, J. Van den Brink, B. Büchner, R. J. Cava, S. V. Borisenko, Sci. Rep. 2014, 4, 5168.Google Scholar

  • [13]

    Y. Shiomi, E. Saitoh, AIP Adv. 2017, 7, 035011.Google Scholar

  • [14]

    X. Z. Xing, C. Q. Xu, N. Zhou, B. Li, J. Zhang, Z. X. Shi, X. Xu, Appl. Phys. Lett. 2016, 109, 122403.Google Scholar

  • [15]

    M. Chamam, K. Lázár, L. Pirault-Roy, I. Boghian, Z. Paál, A. Wootsch, Appl. Cat. A: Gen. 2007, 332, 27.Google Scholar

  • [16]

    F. Somodi, I. Borbáth, J. L. Margitfalvi, S. Stichleutner, K. Lázár, Hyp. Int. 2009, 192, 13.Google Scholar

  • [17]

    M. Sankar, N. Dimitratos, P. J. Miedziak, P. P. Wells, C. J. Kiely, G. J. Hutchings, Chem. Soc. Rev. 2012, 41, 8099.Google Scholar

  • [18]

    A. Lang, W. Jeitschko, Z. Metallkd. 1996, 87, 759.Google Scholar

  • [19]

    A. Lang, W. Jeitschko, J. Mater. Chem. 1996, 6, 1897.Google Scholar

  • [20]

    E.-L. Nordmark, O. Wallner, U. Häussermann, J. Solid State Chem. 2002, 168, 34.Google Scholar

  • [21]

    V. I. Larchev, S. V. Popova, J. Less-Common Met. 1984, 98, L1.Google Scholar

  • [22]

    S. Lösel, Hochdruckexperimente an AB2-Phasen des Arsenopyrit-Typs, Dissertation, Universität Freiburg, Freiburg, 2008.Google Scholar

  • [23]

    K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73.Google Scholar

  • [24]

    V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.Google Scholar

  • [25]

    R. A. Brand, WinNormos for Igor6, Version for Igor 6.2 or above: 22.02.2017, Universität Duisburg, Duisburg, Germany, 2017.Google Scholar

  • [26]

    H. Huppertz, Z. Kristallogr. 2004, 219, 330.Google Scholar

  • [27]

    H. Huppertz, G. Heymann, U. Schwarz, M. R. Schwarz, Handbook of Solid State Chemistry, Vol. 2, (Eds.: R. Dronskowski, S. Kikkawa, A. Stein), Wiley-VCH, Weinheim, 2017, chapter 2, pp. 23–48.Google Scholar

  • [28]

    J. Emsley, The Elements, Oxford University Press, Oxford, 1999.Google Scholar

  • [29]

    D. Niepmann, R. Pöttgen, B. Künnen, G. Kotzyba, C. Rosenhahn, B. D. Mosel, Chem. Mater. 1999, 11, 1597.Google Scholar

  • [30]

    J. Nylén, F. J. Garcìa Garcìa, B. D. Mosel, R. Pöttgen, U. Häussermann, Solid State Sci. 2004, 6, 147.Google Scholar

  • [31]

    B. Künnen, D. Niepmann, W. Jeitschko, J. Alloys Compd. 2000, 309, 1.Google Scholar

  • [32]

    C. Schimpf, P. Kalanke, S. L. Shang, Z. K. Liu, A. Leineweber, Mater. Des. 2016, 109, 324.Google Scholar

  • [33]

    R.-D. Hoffmann, D. Kußmann, U. Ch. Rodewald, R. Pöttgen, C. Rosenhahn, B. D. Mosel, Z. Naturforsch. 1999, 54b, 709.Google Scholar

  • [34]

    P. Buissière, K. Lázár, Hyperfine Interact. 1988, 41, 559.Google Scholar

  • [35]

    P. Buissière, M. Bogé, K. Lázár, Hyperfine Interact. 1990, 54, 775.Google Scholar

  • [36]

    E. Hellner, Z. Kristallogr. 1956, 107, 99.Google Scholar

  • [37]

    K. Schubert, Z. Naturforsch. 1947, 2a, 120.Google Scholar

About the article

Received: 2018-11-05

Accepted: 2018-11-16

Published Online: 2018-12-04


Citation Information: Zeitschrift für Naturforschung B, 20180236, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0236.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in