Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

12 Issues per year


IMPACT FACTOR 2017: 0.757

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.277
Source Normalized Impact per Paper (SNIP) 2017: 0.394

Online
ISSN
1865-7117
See all formats and pricing
More options …
Ahead of print

Issues

Equiatomic iron-based tetrelides TFeSi and TFeGe (T = Zr, Nb, Hf, Ta) – A 57Fe Mössbauer-spectroscopic study

Sebastian Stein
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Theresa Block
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Steffen Klenner
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lukas Heletta
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rainer Pöttgen
  • Corresponding author
  • Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-08 | DOI: https://doi.org/10.1515/znb-2018-0237

Abstract

The equiatomic iron-silicides TFeSi as well as the corresponding germanides TFeGe with the electron-poor 4d and 5d transition metals (T=Zr, Nb, Hf, Ta) have been synthesized from the elements by arc-melting. All samples were characterized through their lattice parameters using powder X-ray diffraction (Guinier technique). Four structures were refined from single-crystal X-ray diffractometer data: a=640.16(3), b=393.45(5), c=718.42(6) pm, Pnma, 390 F2 values, 20 parameters, wR2=0.0294 for ZrFeSi (TiNiSi type), a=719.63(11), b=1119.27(7), c=649.29(7) pm, Ima2, 1103 F2 values, 54 parameters, wR2=0.0555 for NbFeGe (TiFeSi type), a=655.96(7), c=372.54(4) pm, P6̅2m, 251 F2 values, 15 parameters, wR2=0.0260 for HfFeGe (ZrNiAl type) and a=624.10(3), b=378.10(6), c=725.25(7) pm, Pnma, 369 F2 values, 20 parameters, wR2=0.0513 for TaFeGe (TiNiSi type). The common structural motif of the four different structures is the slightly distorted tetrahedral tetrel (tr) coordination of the iron atoms and a trigonal prismatic coordination of iron by T=Zr, Nb, Hf, Ta. Three compounds were characterized as Pauli-paramagnetic by measuring their susceptibility. The measurement of the electrical resistivity of NbFeSi characterises this compound as a good metal. Furthermore, 57Fe Mössbauer spectra of all compounds could be obtained at room temperature, revealing a clear correlation between the structural distortions and the quadrupole splitting parameters.

Keywords: crystal structure; 57Fe Mössbauer spectroscopy; germanides; magnetic properties; silicides

References

  • [1]

    L. Miglio, F. d’Heurle (Eds.), Silicides – Fundamentals and Applications, World Scientific, Singapore, 2000.Google Scholar

  • [2]

    S.-L. Zhang, M. Östling, Crit. Rev. Solid State Mater. Sci. 2003, 28, 1.Google Scholar

  • [3]

    L. J. Chen, JOM 2005, 57, 24.Google Scholar

  • [4]

    A. Nozariasbmarz, A. Agarwal, Z. A. Coutant, M. J. Hall, J. Liu, R. Liu, A. Malhotra, P. Norouzzadeh, M. C. Öztürk, V. P. Ramesh, Y. Sargolzaeiaval, F. Suarez, D. Vashaee, Jpn. J. Appl. Phys. 2017, 56, 05DA04.Google Scholar

  • [5]

    H. Barz, H. C. Ku, G. P. Meisner, Z. Fisk, B. T. Matthias, Proc. Natl. Acad. Sci. 1980, 77, 3132.Google Scholar

  • [6]

    R. Müller, R. N. Shelton, J. W. Richardson, Jr., R. A. Jacobson, J. Less-Common Met. 1983, 92, 177.Google Scholar

  • [7]

    S. Yashiro, A. Kasahi, R. Kasai, H. Samata, Y. Nagata, J. Alloys Compds. 2000, 309, 51.Google Scholar

  • [8]

    R. Mishra, R. Pöttgen, G. Kotzyba, Z. Naturforsch. 2001, 56b, 463.Google Scholar

  • [9]

    T. Dinges, M. Eul, R. Pöttgen, Z. Naturforsch. 2010, 65b, 95.Google Scholar

  • [10]

    C. Benndorf, L. Heletta, G. Heymann, H. Huppertz, H. Eckert, R. Pöttgen, Solid State Sci. 2017, 68, 32.Google Scholar

  • [11]

    P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2017/18), ASM International®, Materials Park, Ohio (USA), 2017.Google Scholar

  • [12]

    I. Shirotani, Y. Konno, Y. Okada, Ch. Sekine, S. Todo, T. Yagi, Solid State Commun. 1998, 108, 967.Google Scholar

  • [13]

    C. Benndorf, Multinukleare Festkörper NMR spektroskopische Untersuchungen ausgewählter intermetallischer Verbindungen, Dissertation, Universität Münster, Münster, 2016.Google Scholar

  • [14]

    C. Benndorf, H. Eckert, R. Pöttgen, Dalton Trans. 2016, 45, 8215.Google Scholar

  • [15]

    W. Jeitschko, A. G. Jordan, P. A. Beck, Trans. Metall. Soc. AIME 1969, 245, 335.Google Scholar

  • [16]

    J. T. Zhao, E. Parthé, J. Less-Common Met. 1990, 163, L7.Google Scholar

  • [17]

    V. Johnson, W. Jeitschko, J. Solid State Chem. 1972, 4, 123.Google Scholar

  • [18]

    W. Jeitschko, Metall. Trans. 1970, 1, 2963.Google Scholar

  • [19]

    R. Pöttgen, T. Gulden, A. Simon, GIT Labor-Fachzeitschrift 1999, 43, 133.Google Scholar

  • [20]

    K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73.Google Scholar

  • [21]

    L. J. van der Pauw, Philips Res. Rep. 1958, 13, 1.Google Scholar

  • [22]

    G. J. Long, T. E. Cranshaw, G. Longworth, Moessbauer Eff. Ref. Data J. 1983, 6, 42.Google Scholar

  • [23]

    R. A. Brand, WinNormos for Igor6, version for Igor 6.2 or above: 22.02.2017, Universität Duisburg, Duisburg, Germany, 2017.Google Scholar

  • [24]

    L. Palatinus, Acta Crystallogr. 2013, B69, 1.Google Scholar

  • [25]

    L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786.Google Scholar

  • [26]

    V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.Google Scholar

  • [27]

    H. D. Flack, G. Bernadinelli, Acta Crystallogr. 1999, A55, 908.Google Scholar

  • [28]

    H. D. Flack, G. Bernadinelli, J. Appl. Crystallogr. 2000, 33, 1143.Google Scholar

  • [29]

    S. Parsons, H. D. Flack, T. Wagner, Acta Crystallogr. 2013, B69, 249.Google Scholar

  • [30]

    W. Jeitschko, Acta Crystallogr. 1969, A25, S97.Google Scholar

  • [31]

    W. Jeitschko, Acta Crystallogr. 1970, B26, 815.Google Scholar

  • [32]

    H. Wondratschek, U. Müller (Eds.), International Tables for Crystallography, Vol. A1, Symmetry relations between space groups, 2nd edition, John Wiley & sons, Ltd, Chichester, 2010.Google Scholar

  • [33]

    S. Yousuf, D. C. Gupta, Phys. B: Condens. Matter 2018, 534, 5.Google Scholar

  • [34]

    C. P. Sebastian, G. Heymann, B. Heying, U. Ch. Rodewald, H. Huppertz, R. Pöttgen, Z. Anorg. Allg. Chem. 2007, 633, 1551.Google Scholar

  • [35]

    R.-D. Hoffmann, U. Ch. Rodewald, S. Haverkamp, C. Benndorf, H. Eckert, B. Heying, R. Pöttgen, Solid State Sci. 2017, 72, 109.Google Scholar

  • [36]

    E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual and R. Gladyshevskii, TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edition, Springer, Berlin, 1993.Google Scholar

  • [37]

    C. B. Shoemaker, D. P. Shoemaker, Acta Crystallogr. 1965, 18, 900.Google Scholar

  • [38]

    J. Emsley, The Elements, Oxford University Press, Oxford, 1999.Google Scholar

  • [39]

    P. I. Krypyakevich, V. Ya. Markiv, E. V. Melnyk, Dopov. Akad. Nauk. Ukr. RSR, Ser. A 1967, 750.Google Scholar

  • [40]

    A. E. Dwight, M. H. Mueller, R. A. Conner, Jr., J. W. Downey, H. Knott, Trans. Met. Soc. AIME 1968, 242, 2075.Google Scholar

  • [41]

    M. F. Zumdick, R.-D. Hoffmann, R. Pöttgen, Z. Naturforsch. 1999, 54b, 45.Google Scholar

  • [42]

    M. F. Zumdick, R. Pöttgen, Z. Kristallogr. 1999, 214, 90.Google Scholar

  • [43]

    R. Pöttgen, Z. Anorg. Allg. Chem. 2014, 640, 869.Google Scholar

  • [44]

    C. P. Sebastian, L. Zhang, C. Fehse, R.-D. Hoffmann, H. Eckert, R. Pöttgen, Inorg. Chem. 46, 2007, 771.Google Scholar

  • [45]

    J. Donohue, The Structures of the Elements, Wiley, New York, 1974.Google Scholar

  • [46]

    B. Fultz, Mössbauer Spectroscopy in Characterization of Materials, (Ed.: E. Kaufman), J. Wiley, New York, 2011.Google Scholar

  • [47]

    F. E. Wagner, Mössbauerspektroskopie, in Untersuchungsmethoden in der Chemie, (Hrsg.: H. Naumer, W. Heller), 2. Auflage, Georg Thieme Verlag, Stuttgart, Kapitel 16, 1990.Google Scholar

About the article

Received: 2018-11-08

Accepted: 2018-11-16

Published Online: 2018-12-08


Citation Information: Zeitschrift für Naturforschung B, 20180237, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0237.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in