Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung C

A Journal of Biosciences

Editor-in-Chief: Seibel, Jürgen

Editorial Board: Aigner , Achim / Boland, Wilhelm / Bornscheuer, Uwe / Hoffmann, Klaus

IMPACT FACTOR 2018: 1.000

CiteScore 2018: 0.99

SCImago Journal Rank (SJR) 2018: 0.246
Source Normalized Impact per Paper (SNIP) 2018: 0.437

See all formats and pricing
More options …
Volume 72, Issue 3-4


Environmental alterations in biofuel generating molecules in Zilla spinosa

Hemmat Khattab / Zeinab El Marid
Published Online: 2016-10-14 | DOI: https://doi.org/10.1515/znc-2016-0151


Now days, production of fuels and petrochemicals from renewable lignocellulosic biomass is an indispensable issue to meet the growing energy demand. Meanwhile, the changes in the climate and soil topography influence the growth and development as well as canopy level of the lignocellulosic biomass. In this study, Zilla spinosa Turr (Zilla) plants with similar age and size were collected from three main sectors (upstream, midstream, and downstream) of Wadi Hagul during spring (April) and summer (July) seasons. Environmental stresses evoked reduction in the energy trapping pigments concomitant with increments in chlorophyll fluorescence in summer harvested plants particularly at downstream. Furthermore, the biofuels generating compounds including carbohydrate, lignin, and lipid making the plant biomasses are greatly affected by environmental conditions. Greater amount of lignin was estimated in summer harvested Z. spinosa shoots particularly at downstream. Moreover, the total oil content which is a promising source of biodiesel was considerably decreased during summer season particularly at downstream. The physical properties of the lipids major constituent fatty acid methyl esters determine the biofuel properties and contribute in the adaptation of plants against environmental stresses. Hence, the analysis of fatty acid profile showed significant modifications under combined drought and heat stress displayed in the summer season. The maximum increase in saturated fatty acid levels including tridecanoic acid (C13:0), pentadeanoic acid (C15:0), palmitic acid (C16:0), and stearic acid (C18:0) were estimated in spring harvested Z. spinosa aerial portions particularly at midstream. In spite of the reduction in the total oil content, a marked increase in the value of unsaturated to saturated fatty acids ratio and thereby the unsaturation index were achieved during the dry summer period. Henceforth, these seasonal and spatial variations in fatty acids profiles may contribute in the acclimatization of Z. spinosa plants to soil water scarcity associated with heat stress experienced during summer. In addition, the alterations in the fatty acid profiles may match biofuel requirements. In conclusion, the most adequate growing season (spring) will be decisive for achieving high lipid productivity associated with improved biofuel quality in terms of high saturated fatty acids percentage that improves its cetane number. However, the dry summer season enhanced the accumulation of greater amount of lignin that may enhance the biodiesel quantity.

Keywords: biofuel; carbohydrates; cellulose; fatty acids; heat stress; lignin; lipids; water scarcity; Zilla spinose (Turr)


  • 1.

    Dash M, Dasu VV, Mohanty K. Physico-chemical characterization of miscanthus, castor, and jatropha towards biofuel production, J Renew Sust Energy 2015;7:043124.Google Scholar

  • 2.

    Pereira JS, Chaves MM. Plant responses to drought under climate change in mediterranean-type ecosystems. In global change and mediterranean-type ecosystems 1995. New York: Springer, 1995:140–160.Google Scholar

  • 3.

    Krasensky J, Jonak C. Drough, salt, and temperature stress induced metabolic rearrangements and regulatory networks, J Exp Bot 2012;63:1593–608.Google Scholar

  • 4.

    Larcher W. Physiological plant ecology. (plant growth regulation, The Netherlands) the 4th ed. Berlin Heidelberg; Springer-Verlag, 2003:513. Available at: http://refhub.elsevier.com/S1364-0321(14)00067-7/sbref38.

  • 5.

    Richardson AD, Duigan SP, Berlyn GP. An evaluation of non-invasive methods to estimate foliar chlorophyll content. New Phytol 2002;153:185–94.Google Scholar

  • 6.

    Nikolaeva MK, Maevskaya SN, Shugaev AG, Bukhov NG. Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russian J Plant Physiol 2010;57:87–95.Google Scholar

  • 7.

    Lichtenthaler HK, Rinderle U. The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit Rev Anal Chem 1988;19(suppl 1):529–85.Google Scholar

  • 8.

    Crafts-Brandner SJ, Salvucci ME. Sensitivity of photosynthesis in a C4 plant maize to heat stress. Plant Physiol 2002;129:1773–80.Google Scholar

  • 9.

    Boughalleb F, Hajlaoui H. Physiological and anatomical changes induced by drought in two olive cultivars (cv Zalmati and Chemlali). Acta Physiol Plant 2011;650:53–65.Google Scholar

  • 10.

    Al-Khatib K, Paulsen GM. High-temperature effects on photosynthetic processes in temperate and tropical cereals. Crop Sci 1999;39:119–25.Google Scholar

  • 11.

    Thebud R, Santarius KA. Effects of high-temperature stress on various biomembranes of leaf cells in situ and in vitro. Plant Physiol 1982;70:200–205.Google Scholar

  • 12.

    Carroll A, Somerville C. Cellulosic biofuels. Annu Rev Plant Biol 2008;60:165–182.Google Scholar

  • 13.

    Lange JP. Lignocellulose conversion: an introduction to chemistry, process and economics. In: Centi G, van Santen R, editors. Catalysis for renewables. Weinheim: Wiley-VCH, 2007.Google Scholar

  • 14.

    Hu WJ, Harding SA, Lung J, Popko J, Ralph J, Stokke DD, et al. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 1999;17:808–12.Google Scholar

  • 15.

    Fu C, Mielenz JR, Xiao X,Ge Y, Hamilton CY, Rodriguez M Jr, et al. Genetic Manipulation of Lignin Reduces Recalcitrance and Improves Ethanol Production from Switchgrass. Proc Natl Acad Sci USA 2011;108:3803–8.Google Scholar

  • 16.

    Weng JK, Chapple C. The origin and evolution of lignin biosynthesis. New Phytol 2010;187:273–85.Google Scholar

  • 17.

    Uzal EN, Gomez Ros LV, Pomar F, Bernal MA, Paradela A, Albar JP, et al. The presence of sinapyl lignin in ginkgo biloba cell cultures changes our views of the evolution of lignin biosynthesis. Physiol Plant 2009;135:196–213.Google Scholar

  • 18.

    Nawrath C, Schreiber L, Franke RB, Geldner N, Reina-Pinto JJ, Kunst L. Apoplastic diffusion barriers in arabidopsis. Arab Book 2013;11: e0167.Google Scholar

  • 19.

    Asada K. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Biol 1999;50:601–39.Google Scholar

  • 20.

    Stepien P, Klobus G. Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plant 2005;125:31–40.Google Scholar

  • 21.

    Sharma P, Jha BA, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012;2012. Article ID 217037, 26 pp. doi:.CrossrefGoogle Scholar

  • 22.

    Bailly C, Benamar A, Corbineau F, Dome D. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seed as related to deterioration during accelerated aging. Physiol Plant 1996;97:104–10.Google Scholar

  • 23.

    Harwood JL, Russell NJ. Lipids in plants and microbes. London: George Allen & Unwin, 1984, pp. 162.Google Scholar

  • 24.

    Tiwari AK, Kumar A, Raheman H. Biodiesel production from jatropha oil (Jatropha curcas L.) with high free fatty acid: an optimized process. Biomass Bioenergy 2007;31:569–75.Google Scholar

  • 25.

    Schwab AW, Bagby MO, Freedman B. Preparation and properties of diesel fuels from vegetable oils. Fuel 1987;66:1372–8.Google Scholar

  • 26.

    Bamgboye AI, Hansen AC. Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. Int Agrophys 2008;22:21–9.Google Scholar

  • 27.

    Pham-Thi AT, Borrel-Flood C, Vieira da Silva J, Justin AM, Mazliak P. Effects of water stress on lipid metabolism in cotton leaves. Phytochemistry 1985;24:23–7.Google Scholar

  • 28.

    Navari-Izzo F, Quartacci MF, Izzo, R. Lipid changes in maize seedlings in response to field water deficits. J Exp Bot 1989;40:675–80.Google Scholar

  • 29.

    Canakci M, Van Gerpen J. Biodiesel production from oils and fats with high free fatty acids. Trans Am Soc Agric Eng (ASAE) 2001;44:1429–36.Google Scholar

  • 30.

    Wilson C, Gilmore R, Morrison T. Translation and membrane insertion of the hemagglutinin-neuraminidase glycoprotein of newcastle disease virus. Mol Cell Biol 1987;7:1386–92.Google Scholar

  • 31.

    Wiesenberg GL, Schneckenberger K, Schwark L, Kuzyakov Y. Use of molecular ratios to identify changes in fatty acid composition of Miscanthus giganteus (Greef et Deu.) plant tissue, rhizosphere and root-free soil during a laboratory experiment. Org Geochem 2012;46:1–11.Google Scholar

  • 32.

    Gigon A, Matos AR, Laffray D, Zuily-Fodil Y, Pham-Thi AT. Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia). Ann Bot 2004;94:345–51.Google Scholar

  • 33.

    Monteiro de Paula F, Pham Thi AT, Vieira da Silva J, Justin AM, Demandre C, Mazliak P. Effects of water stress on the molecular species composition of polar lipids from Vigna unguiculata leaves. Plant Sci 1990;66:185–93.Google Scholar

  • 34.

    Repellin A, Pham-Thi AT, Tashakorie A, Sahsah Y, Daniel C, Zuily-Fodil Y. Leaf membrane lipids and drought tolerance in young coconut palms (Cocos nucifera L.). Eur J Agron 1997;6: 25–33.Google Scholar

  • 35.

    Quinn PJ. Regulation of membrane fluidity in plants. Advances in membrane fluidity, physiological regulation of membrane fluidity. New York: Alan R. Liss, Inc., 1988:293–321.Google Scholar

  • 36.

    Matsuzaki F, Matsumoto S, Yahara I. Truncation of the carboxy-terminal domain of yeast beta-tubulin causes temperature-sensitive growth and hypersensitivity to antimitotic drugs. J Cell Biol 1988;107:1427–35.Google Scholar

  • 37.

    Hamrouni I, Salah HB, Marzouk B. Effects of water-deficit on lipids of safflower aerial parts. Phytochemistry 2001;58:277–80.Google Scholar

  • 38.

    Bettaieb I, Zakhama N, Wannes WA, Kchouk ME, Marzouk B. Water deficit effects on salvia officinalis fatty acids and essential oils composition. Sci Hortic 2009;120:271–5.Google Scholar

  • 39.

    Hanson AD, Hitz WD. Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol 1982;33:163–203.Google Scholar

  • 40.

    Zaki VA. Ecophsiological studies on plant-soil relationships in an african arid environment under some stress conditions, ph.D. thesis, Natural. Resources Department Institute of African Research and studies; Cairo, Egypt, 1995.Google Scholar

  • 41.

    Richards LA. Diagnosis and improvement of saline and alkali soils. USDA Handbook 1954; No. 60.Google Scholar

  • 42.

    Ryan J, Garabet S, Rashid A, El-Gharous M. Assessment of soil and plant analysis laboratories in the West Asia – North Africa region. Commun Soil Sci Plant Anal 1999;30:885–94.Google Scholar

  • 43.

    Metzener H, Rau H, Senger H. Untersuchungen Zur Synchronisierbarteit Einzelnerpigment-Mangel-Mutantebvon Chlorella. Planta (Berl.) 1965;65:186–94.Google Scholar

  • 44.

    Reinbothe C, Lebedev N, Reinbothe S. A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants. Nature 1999;397:80–4.Google Scholar

  • 45.

    Homme PM, Gonalez B, Billard J. Carbohydrate content, fructane and sucrose enzyme activities in roots, stubble and leaves of rye grass (Lolium perenne L.) as affected by source/sink modification after cutting. J Plant Physiol 1992;140:282–29.Google Scholar

  • 46.

    Fairbairn NJ. A modified anthrone reagent. Chem Ind 1953; 31:86.Google Scholar

  • 47.

    Jenkins SH. The determination of cellulose in straws. Biochem J 1930;24:1428–32.Google Scholar

  • 48.

    Ritter GJ, Seborg RM, Mitchell RL. Factors affecting quantitative determination of lignin by 72% sulfuric acid method. Ind Eng Chem Anal Ed 1932;4:202–4.Google Scholar

  • 49.

    Cakmak I, Horst JH. Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 1991;83:463–8.Google Scholar

  • 50.

    AOAC, Official methods of analysis. Association Of Official Analytical Chemist International, (ed) 17th. Gaithersburg MD, USA. Rosenthal A, Pyle 2002.Google Scholar

  • 51.

    Metcalfe LD, Schemitz AA, Pelka JR. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem 1966;38:514–5.Google Scholar

  • 52.

    Ruggiero LF, Hayward GD, Squires JR. Viability analysis in biological evaluations: concepts of population viability analysis, biological population, and ecological scale. Conserv Biol 1994;8:364–72.Google Scholar

  • 53.

    Legendre P, Legendre LF. Numerical ecology, 3rd English edition. In: Developments in environmental modelling, Vol. 24. Amsterdam: Elsevier Science BV, 2012:990.Google Scholar

  • 54.

    Ehleringer JR, Cooper TA. On the role of orientation in reducing photoinhibitory damage in photosynthetic-twig desert shrubs. Plant Cell Environ 1992;15:301–6.Google Scholar

  • 55.

    Jin VL, Haney RL, Fay PA, Polley HW. Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO2-induced changes in litter quality virginia L. Soil Biol Biochem 2013;58:172–80.Google Scholar

  • 56.

    Rhizopoulou S, Meletiou-Christou MS, Diamantoglou S. Water relations for sun and shade leaves of four mediterranean evergreen sclerophylls. J Exp Bot 1991;42:627–35.Google Scholar

  • 57.

    Aziz I, Ayoob M, Jite PK. Response of Solanum melongena l. to inoculation with arbuscular mycorrhizal fungi under low and high phosphate condition. Not Sci Biol 2011;3:70–4.Google Scholar

  • 58.

    Kaewsuksaeng S. Chlorophyll degradation in horticultural crops. Walailak J Sci Technol 2011;8:9–19.Google Scholar

  • 59.

    Aziz I. Seasonal flux in water potential, proline and chlorophyll content in desert shrubs at Ziarat valley, Balochistan, Pakistan. Pak J Bot 2007;39:1995–2002.Google Scholar

  • 60.

    Spitaler R, Schlorhaufer PD, Ellmerer EP, Merfort I, Bortenschlager S, Stuppner H, et al. Altitudinal variation of secondary metabolite profiles in flowering heads of Arnica montanacv. ARBO. Phytochemistry 2006;67:409–17.Google Scholar

  • 61.

    Zhang T, Shen Z, Xu P, Zhu J, Lu Q, Shen Y, et al. Analysis of photosynthetic pigments and chlorophyll fluorescence characteristics of different strains of Porphyra yezoensis. J Appl Phycol 2012;24:881–6.Google Scholar

  • 62.

    Ashraf MY, Azmi AR, Khan AH, Ala SA. Effect of water stress on total phenol, peroxidase activity and chlorophyll contents in wheat (Triticum aestivum L.). Acta Physiol Plant 1994;16:185–91.Google Scholar

  • 63.

    Estill K, Delaney RH, Smith WK, Ditterline RL. Water relations and productivity of alfalfa leaf chlorophyll variants. Crop Sci 1991;31:1229–33.Google Scholar

  • 64.

    Efeoglu B, Terzioglu S. Photosynthetic responses of two wheat varieties to high temperature. EurAsia J BioSci 2009;3:97–106.Google Scholar

  • 65.

    Balouchi HR. Screening wheat parents of mapping population for heat and drought tolerance, detection of wheat genetic variation. Int J Biol Life Sci 2010;6:56–66.Google Scholar

  • 66.

    Reda F, Mandoura HM. Response of enzymes activities, photosynthetic pigments, proline to low or high temperature stressed wheat plant (Triticum aestivum L.) in the presence or absence of exogenous proline or cysteine. Int J Acad Res 2011;3:108–15.Google Scholar

  • 67.

    Koyro HW. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopusL. Environ Exper Bot 2006;56:136–46.Google Scholar

  • 68.

    Buschmann C. Plant responses to environmental stresses. J Plant Physiol 2000;157:243.Google Scholar

  • 69.

    Lichtenthaler HK, Babani F, Langsdorf G, Buschmann C. Measurement of differences in red chlorophyll fluorescence and photosynthetic activity between sun and shade leaves by fluorescence imaging. Photosynthetica 2000;38:523–31.Google Scholar

  • 70.

    Theisen AF. Fluorescence changes of a drying marple leaf observed in the visible and nearinfrared. In: Lichtenthaler HK, editor. Applications of chlorophyll fluorescence in photosynthesis research, stress physiology, hydrobiology and remote sensing. Dordrecht: Kluwer Academic Publishers, 1988:197–201.Google Scholar

  • 71.

    Lichtenthaler HK. The stress concept in plants: an introduction. In: “Stress of Life: from Molecules to Man. (P. Csermely Ed.)”, Ann. N. Y. Acad. Sci. 1998;851:187–98.Google Scholar

  • 72.

    Hura T, Grzesiak S, Hura K, Grzesiak M, Rzepka A. Differences in the physiological state between triticale and maize plants during drought stress and followed rehydration expressed by the leaf gas exchange and spectrofluorimetric methods. Acta Physiol Plant 2006;28:433–43.Google Scholar

  • 73.

    Krause GH, Weis E. Chlorophyll Fluorescence and Photosynthesis: the Basics. Annu. Rev. Plant Biol 1991;42:313–49.Google Scholar

  • 74.

    Kancheva R, Iliev I, Borisova D, Chankova S, et al. Detection of plant physiological stress using spectral data. Ecol Eng Environ Protect 2005;1:4–9.Google Scholar

  • 75.

    Levitt J. Responses of plants to environmental stresses. Volume II. Water, radiation, salt, and other stresses (No. ed. 2). New York: Academic Press, 1980.Google Scholar

  • 76.

    Silva EC, Nogueira RJ, Vale FH, Araújo FP, Pimenta MA. Stomatal changes induced by intermittent drought in four umbu tree genotypes. Braz J Plant Physiol 2009;21:33–42.Google Scholar

  • 77.

    Pagter M, Bragato C, Brix H. Tolerance and physiological responses of Phragmites australis to water deficit. Aquat Bot 2005;81:285–99.Google Scholar

  • 78.

    Sircelj H, Tausz M, Grill D, Batic F. Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. J Plant Physiol 2005;162:1308–18.Google Scholar

  • 79.

    Rayan A. Seasonal variation in chlorophyll and sugar contents in some desert species. Bulletin of the Faculty of Science, Assiut University; 2004;33:61–70.Google Scholar

  • 80.

    Mattson NS, Lieth JH, Kim WS. Temporal dynamics of nutrient and carbohydrate distribution during crop cycles of rosa spp. ‘Kardinal’ in response to light availability. Sci Hortic 2008;118:246–54.Google Scholar

  • 81.

    Vilela AE, Agüero PR, Ravetta D, González-Paleo R. Long-term effect of carbohydrate reserves on growth and reproduction of Prosopis denudans (Fabaceae): implications for conservation of woody perennials. Conserv Physiol 2016;4:cov068.Google Scholar

  • 82.

    Scarano FR, Cattânio JH, Crawford RMM, root carbohydrate storage in young saplings of an Amazonian Tidal VáRzea forest before the onset of the wet season. Acta Bot Bras 1994;8: 129–39.Google Scholar

  • 83.

    McDowell N, Pockman WT, Allen CD, Breshears DD, Coob N, Kolb T, et al. mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 2008;178:719–39.Google Scholar

  • 84.

    David D, Sundarababu S, Gerst JE. Involvement of long chain fatty acid elongation in the trafficking of secretory vesicles in yeast. J Cell Biol 1998;143:1167–82.Google Scholar

  • 85.

    Li T, Zhang Y, Liu H, et al. Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 and salt tolerance in transgenic soybean for over six generations. Chinese Sci Bull 2010;55:1127–34.Google Scholar

  • 86.

    Netting AG. PH, abscisic acid and the integration of metabolism in plants under stressed and non-stressed conditions: cellular responses to stress and their implication for plant water relations. J Exp Bot 2000;51:147–158.Google Scholar

  • 87.

    Lambers H, Atkin OK, Millenaar FF. Respiratory patterns in roots in relation to their functioning. In: Waisel Y, Eshel A, Kafkafi U, editors. Plant roots, the hidden half, 3rd ed. New York, NY, USA: Marcel Dekker, 2002:521–52.Google Scholar

  • 88.

    Kafkafi U. Root growth under stress: salinity. In: Waisel Y, Eshel A, Kafkafi U, editors. Plant roots. The hidden half. New York: Marcel Dekker, Inc., 1991:375–91.Google Scholar

  • 89.

    Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, et al. Nonstructural carbon in woody plants. Annu Rev Plant Biol 2014;65:667–87.Google Scholar

  • 90.

    Ride JP. Cell wall and other structural barriers. In: Callow JA, editor. Biochemical plant pathology. New York: Jhon Wiley & Sons, Ltd., 1983:215–35.Google Scholar

  • 91.

    Baxter HL, Stewart Jr CN. Effects of altered lignin biosynthesis on phenylpropanoid metabolism and plant stress. Biofuels 2013;4:635–50.Google Scholar

  • 92.

    Voelker L, Lachenbruch B, Meinzer FC, Kitin P, Strauss SH, et al. Transgenic Poplars with Reduced Lignin Show Impaired Xylem Conductivity, Growth Efficiency and Survival. Plant Cell Environ 2011;34:655–68.Google Scholar

  • 93.

    Somerville C, Youngs H, Taylor C, Davis SC, Long SP. Feedstocks for lignocellulosic biofuels. Science 2010;329:790–92.Google Scholar

  • 94.

    Frei M. Lignin: characterization of a multifaceted crop component. Sci World J 2013;2013:25.Google Scholar

  • 95.

    Vance CP, Kirk TK, Sherwood RT. Lignification as a mechanism of disease resistance. Annu Rev Phytopath 1980;18:259–88.Google Scholar

  • 96.

    Monteiro de Paula F, Thi ATP, Zuily-Fodil Y, Ferrari-Iliou R, et al. Effects of Water stress on the biosynthesis and degradation of polyunsaturated lipid molecular species in leaves of Vigna unguiculata. Plant Physiol Biochem 1993;31:707–15.Google Scholar

  • 97.

    Matos AR, d’Arcy-Lameta A, França M, Pêtres S, Edelman L, Kader J, et al. A Novel Patatin-like Gene Stimulated by Drought Stress Encodes a Galactolipid Acyl Hydrolase. Febs Lett. 2001;491:188–92.Google Scholar

  • 98.

    Liu X, Huang B. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci 2000;40: 503–10.Google Scholar

  • 99.

    Upchurch RG. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 2008;30:967–77.Google Scholar

  • 100.

    Martins-Júnior RR, Oliveira MS, Baccache MA, de Paula FM. Effects of water deficit and rehydration on the polar lipid and membranes resistance leaves of Phaseolus vulgaris L. cv. Pérola. Braz Arch Biol Technol 2008;51:361–7.Google Scholar

  • 101.

    Silva R. Effect of planting date and planning distance on growth of flaxseed. Agron J 2005;136:113–8.Google Scholar

  • 102.

    Werteker M, Lorenz A, Johannes H, Berghofer E, Findlay CS. Environmental and varietal influences on the fatty acid composition of rapeseed, soybeans and sunflowers. J Agron Crop Sci 2010;196:20–7.Google Scholar

  • 103.

    Mirshekari M, Amiri R, Iran Nezhad H, Sadat Noori SA, Zandvakili OR. Effects of planting date and water deficit on quantitative and qualitative traits of flax Seed. Am Eur J Agric Environ Sci 2012;12:901–13.Google Scholar

  • 104.

    Ahmed FE, Hall A E, Madore MA. Interactive effects of high temperature and elevated carbon dioxide concentration on cowpea Vigna unguiculata (L.)Walp. Plant Cell Environ 1993;16:835–42.Google Scholar

  • 105.

    Kizis D, Lumbreras V, Pagès M. Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett 2001;498:187–9.Google Scholar

  • 106.

    Yordanov V, Velikova I, Tsonev T. Plant responses to drought, acclimation and stress tolerance. Photosynthesis 2000;38:171–86.Google Scholar

  • 107.

    Savchenko GE, Klyuchareva EA, Abramchik LM, Serdyuchenko EV. Effect of periodic heat shock on the inner membrane system of etioplasts. Russ J Plant Physiol 2002;49:349–59.Google Scholar

  • 108.

    Zhong DH, Du HM, Wang ZL, Huang BR. Genotypic variation in fatty acid composition and unsaturation levels in bermudagrass associated with leaf dehydration tolerance. J Am Soc Hortic Sci 2011;136:35–40.Google Scholar

  • 109.

    Toumi I, Gargouri M, Nouairi I, Moschou PN, Ben Salem-Fnayou A, Mliki A, et al. Water stress induced changes in the leaf lipid composition of four grapevine genotypes with different drought tolerance. Biol Plant 2008;52:161–4.Google Scholar

  • 110.

    Rachmilevitch S, Da Costa M, Huang B. Physiological and biochemical indicators for stress tolerance. Plant–environment interactions, 3rd ed. Boca Raton, FL: CRC Press, 2006: 321–356.Google Scholar

  • 111.

    Zhang M, Barg R, Yin M, Gueta-Dahan Y, Leikin-Frenkel A, Salts Y, et al. Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J 2005;44:361–71.Google Scholar

  • 112.

    Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N. Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 2001;125:1842–53.Google Scholar

  • 113.

    Berberich T, Harada M, Sugawara K, Kodama H, Iba K, Kusano T. Two maize genes encoding omega-3 fatty acid desaturase and their differential expression to temperature. Plant Mol Boil 1998;36:297–306.Google Scholar

  • 114.

    Mikami K, Murata N. Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog Lipid Res 2003;42:527–43.Google Scholar

  • 115.

    Sui N, Li M, Li K, Song J, Wang BS. Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity. Photosynthetica, 2010;48:623–9.Google Scholar

  • 116.

    Sui N, Han G. Salt-induced photoinhibition of PSII is alleviated in halophyte Thellungiella halophila by increases of unsaturated fatty acids in membrane lipids. Acta Physiol Plant 2014;36:983–92.Google Scholar

  • 117.

    Anai T, Koga M, Tanaka H, Kinoshita T, Rahman SM, Takagi Y, et al. Improvement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene. Plant Cell Rep 2003;21:988–92.Google Scholar

  • 118.

    Blee E. Impact of phyto-oxylipins in plant defense. Trends Plant Sci 2002;7:315–22.Google Scholar

  • 119.

    Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB. The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of arabidopsis. Plant Cell Online 2007;19:351–68.Google Scholar

  • 120.

    Yuan X, Li Y, Liu S, Xia F, Li X, Qi B. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Aarabidopsis thaliana. J Exper Bot 2014;65:1637–49.Google Scholar

  • 121.

    Xu L, Han L, Huang B. Membrane fatty acid composition and saturation levels associated with leaf dehydration tolerance and post-drought rehydration in kentucky bluegrass. Crop Sci 2011;51:273–81.Google Scholar

  • 122.

    Dakhma WS, Zarrouk M, Cherif, A. Effects of drought stress on lipids in rape leaves. Phytochemistry 1995;40:1383–6.Google Scholar

  • 123.

    Francois LE, Kleiman R. Salinity effects on vegetative growth, seed yield, and fatty acid composition of crambe. Agron J 1990;82:1110–4.Google Scholar

  • 124.

    Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G. Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 1997;203:460–9.Google Scholar

  • 125.

    El-Maarouf H, Zuily-Fodil Y, Gareil M, Arcy-Lameta A, Pham-Thi AT. Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. walp. differing in drought tolerance. Plant Mol Biol 1999;39:1257–65.Google Scholar

  • 126.

    Xu ZZ, Zhou GS. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 2006;224:1080–90.Google Scholar

  • 127.

    Gülen H, Çetinkaya C, Kadıoğlu M, Kesici M, Cansev A, Eri A. Peroxidase activity and lipid peroxidation in strawberry (Fragaria×ananassa) plants under low temperature. J Biol Environ Sci 2008;2:95–100.Google Scholar

  • 128.

    Amini H, Arzani A, Karami M. Effect of water deficiency on seed quality and physiological traits of different safflower genotypes. Turk J Biol 2014;38:271–82.Google Scholar

  • 129.

    Aldesuquy H, Ghanem H. Exogenous salicylic acid and trehalose ameliorate short term drought stress in wheat cultivars by up-regulating membrane characteristics and antioxidant defense system. J Horticult 2015;2:1–10.Google Scholar

About the article

Received: 2016-02-01

Revised: 2016-09-01

Accepted: 2016-09-04

Published Online: 2016-10-14

Published in Print: 2017-03-01

Citation Information: Zeitschrift für Naturforschung C, Volume 72, Issue 3-4, Pages 77–91, ISSN (Online) 1865-7125, ISSN (Print) 0939-5075, DOI: https://doi.org/10.1515/znc-2016-0151.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in