Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung C

A Journal of Biosciences

Editor-in-Chief: Seibel, Jürgen

Editorial Board: Aigner , Achim / Boland, Wilhelm / Bornscheuer, Uwe / Hoffmann, Klaus

12 Issues per year

IMPACT FACTOR 2017: 0.882
5-year IMPACT FACTOR: 0.912

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.288
Source Normalized Impact per Paper (SNIP) 2017: 0.448

See all formats and pricing
More options …
Volume 73, Issue 3-4


Pseudomonas and Burkholderia inhibit growth and asexual development of Phytophthora capsici

Amena Khatun
  • Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tarin Farhana
  • Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abdullah As Sabir
  • Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shah Mohammad Naimul Islam
  • Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Helen M. West / Mahfuzur Rahman / Tofazzal Islam
  • Corresponding author
  • Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-02-03 | DOI: https://doi.org/10.1515/znc-2017-0065


The objective of this study was to isolate and characterize antagonistic rhizobacteria from chili against a notorious phytopathogen Phytophthora capsici. Among the 48 bacteria isolated, BTLbbc-02, BTLbbc-03, and BTLbbc-05 were selected based on their inhibitory activity against P. capsici. They were tentatively identified as Burkholderia metallica BTLbbc-02, Burkholderia cepacia BTLbbc-03, and Pseudomonas aeruginosa BTLbbc-05, respectively, based on their 16S rRNA gene sequencing. All inhibited the growth of P. capsici at varying levels by inducing characteristic morphological alterations of P. capsici hyphae. The cell-free culture supernatant of all three isolates impaired motility (up to 100%) and caused lysis (up to 50%) of the halted zoospores. Bioassays revealed that Pseudomonas sp. had higher antagonism and zoospore motility-inhibitory effects against P. capsici compared with two other isolates, Burkholderia spp. and B. metallica, which caused vacuolation in mycelium. All three bacteria suppressed sporangium formation and zoosporogenesis of P. capsici, and improved the seed germination and growth of cucumber. Our findings suggest that epiphytic bacteria, B. metallica, B. cepacia, and P. aeruginosa, could be used as potential biocontrol agents against P. capsici. A further study is required to ensure conformity with the existing regulations for soil, plant, and human health.

This article offers supplementary material which is provided at the end of the article.

Keywords: biocontrol; biopesticide; Phytophthora; rhizobacteria; zoospore


  • 1.

    Sarma YR. Global scenario of disease and pest management in black pepper. Int Pepper News Bull 2003;69–74.Google Scholar

  • 2.

    Judelson HS, Blanco FA. The spores of Phytophthora: weapons of the plant destroyer. Nat Rev Microbiol 2005;3:47–58.PubMedCrossrefGoogle Scholar

  • 3.

    Qi R, Wang T, Zhao W, Li P, Ding J, Gao Z. Activity of ten fungicides against Phytophthora capsici isolates resistant to metalaxyl. J Phytopathol 2012;160:717–22.CrossrefWeb of ScienceGoogle Scholar

  • 4.

    Deacon JW, Donaldson SP. Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycol Res 1993;97:1153–71.CrossrefGoogle Scholar

  • 5.

    Kroon LP, Brouwer H, de Cock AW. The genus Phytophthora anno. Phytopathology 2012;102:348–64.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 6.

    Islam MT, Hashidoko Y, Deora A, Ito T, Tahara, S. Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soil borne Peronosporomycetes. Appl Environ Microbiol 2005;71:3786–96.CrossrefGoogle Scholar

  • 7.

    Islam MT, Hossain MM. Biological control of peronosporomycete phytopathogen by bacterial antagonist. Bact Agrobiol Dis Manage 2013;167–218.Google Scholar

  • 8.

    Ahmed SU. The dynamics of agricultural land management system in Bangladesh: the challenges for sustainable development. Am J Rural Dev 2017;5:5–18.Google Scholar

  • 9.

    Sang MK, Shrestha A, Kim DY, Park K, Pak CH, Kim KD. Biocontrol of Phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against Phytophthora capsici. Plant Pathol J 2013;29:154–67.Web of SciencePubMedCrossrefGoogle Scholar

  • 10.

    Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 2008;278:1–9.CrossrefWeb of SciencePubMedGoogle Scholar

  • 11.

    Yanga R, Fana X, Caia X, Hu F. The inhibitory mechanisms by mixtures of two endophytic bacterial strains isolated from Ginkgo biloba against pepper Phytophthora blight. Biol Control 2015;85:59–67.CrossrefWeb of ScienceGoogle Scholar

  • 12.

    Chauhana H, Bagyaraja DJ, Selvakumarb G, Sundaram SP. Novel plant growth promoting rhizobacteria – prospects and potential. Appl Soil Ecol 2015;95:38–53.CrossrefWeb of ScienceGoogle Scholar

  • 13.

    Fang X, Zhang M, Tang Q, Wang Y, Zhang X. Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta. Sci Rep 2014;6:4300.Web of ScienceGoogle Scholar

  • 14.

    Sopheareth M, Chan S, Naing KW, Lee YS, Hyun HN, Kim YC, et al. Biocontrol of late blight (Phytophthora capsici) disease and growth promotion of pepper by Burkholderia cepacia MPC-7. Plant Pathol J 2013;29:67–76.CrossrefWeb of SciencePubMedGoogle Scholar

  • 15.

    Yang MM, Xu LP, Xue QY, Yang JH, Xu Q, Liu HX, et al. Screening potential bacterial biocontrol agents towards Phytophthora capsici in pepper. Eur J Plant Pathol 2012;134:811–20.Web of ScienceCrossrefGoogle Scholar

  • 16.

    Zohara F, Akanda MA, Paul NC, Rahman M, Islam MT. Inhibitory effects of Pseudomonas spp. on plant pathogen Phytophthora capsici in vitro and in planta. Biocatal Agric Biotechnol 2016;5:69–77.Web of ScienceGoogle Scholar

  • 17.

    Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P. Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol 2006;14: 277–86.CrossrefPubMedGoogle Scholar

  • 18.

    Chiarini L, Bevivino A, Tabacchioni S, Dalmastri C. Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: root colonization and plant growth promotion of dual strain inocula. Soil Biol Biochem 1988;30:81–7.Google Scholar

  • 19.

    Azadeh BF, Sariah M, Wong MY. Characterization of Burkholderia cepacia genomovar I as a potential biocontrol agent of Ganoderma boninense in oil palm. Afr J Biotechnol 2010;9:3542–8.Google Scholar

  • 20.

    Sarker A, Islam, MT. Screening and application of PSB for rice production in acidic soil. Saarbrücken, Germany: LAP Lambert Academic Publishing AG&Co KG, 2012.Google Scholar

  • 21.

    Islam MT, Hashidoko Y, Tahara S. Understanding of ecochemical interactions between plants and zoospores: potentials for biorational control of the peronosporomycete soil borne phytopathogens. In: Singh DP, editor. Crop Production in Stress Environments: Genetic and Management Options. Jodhpur, India: Agrobios International, 2007;275–88.Google Scholar

  • 22.

    Islam MT, Tahara S. Host-specific plant signal and G protein activator, mastoparan, trigger differentiation of zoospores of the phytopathogenic oomycete Aphanomyces cochlioides. Plant Soil 2003;255:131–42.CrossrefGoogle Scholar

  • 23.

    Chilpa RR, Vazquez IR, Estrada MJ, Ocana AN, Hernandez JC. Antifungal activity of selected plant secondary metabolites against Coriolus versicolor. J Tropic Forest Prod 1997;3:110–3.Google Scholar

  • 24.

    Bergey DH, Holt JG, Noel RK. Bergey’s manual of systematic bacteriology, 9th ed. Baltimore, MD: Williams & Wilkins, 1994;1935–2045.Google Scholar

  • 25.

    Park M, Kim C, Yang J, Lee H, Shin W, Kim S, et al. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 2005;160:127–33.CrossrefPubMedGoogle Scholar

  • 26.

    Osborne CA, Galic M, Sangwan P, Janssen PH. PCR-generated artefact from 16S rRNA gene-specific primers. FEMS Microbiol Lett 2005;15:248:183–7.Google Scholar

  • 27.

    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–402.CrossrefPubMedGoogle Scholar

  • 28.

    Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. Introducing EzTaxon-e: a praokaryotic 16SrRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–21.CrossrefGoogle Scholar

  • 29.

    Bric JM, Bostock RM, Silverstone SE. Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 1991;57:535–8.PubMedGoogle Scholar

  • 30.

    Gordon SA, Weber RP. Colorimetric estimation of indole acetic acid. Plant Physiol 1951;26:192–5.CrossrefPubMedGoogle Scholar

  • 31.

    Vrbničanin S, Božić D, Sarić M, Pavlović D, Raičević V. Effect of plant growth promoting rhizobacteria on Ambrosia artemisiifolia L. seed germination. Pestic Phytomed 2011;26:141–6.CrossrefGoogle Scholar

  • 32.

    Ramamoorthy V, Raguchander T, Samiyappan R. Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. lycopersici. Plant Soil 2002;239:55–68.CrossrefGoogle Scholar

  • 33.

    Abdul-Baki AA, Anderson JD. Vigor determination in soybean by multiple criteria. Crop Sci 1973;13:630–3.CrossrefGoogle Scholar

  • 34.

    Mahenthiralingam E, Bischof J, Byrne SK, Radomski C, Davies JE, Av-Gay Y, et al. DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis and Burkholderia cepacia genomovars I and III. J Clin Microbiol 2000;38:3165–73.PubMedGoogle Scholar

  • 35.

    Hazem S, Shafie E, Camele I, Racioppi R, Scrano L, Iacobellis NS, et al. In vitro antifungal activity of Burkholderia gladioli pv. agaricicola against some phytopathogenic fungi. Int J Mol Sci 2012;13:16291–302.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 36.

    Shehata HR, Lyons EM, Jordan KS, Raizada MN. Relevance of in vitro agar based screens to characterize the anti-fungal activities of bacterial endophyte communities. BMC Microbiol 2016;16:8.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 37.

    Lee SY. Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 1996;49:1–14.PubMedCrossrefGoogle Scholar

  • 38.

    Aravind R, Kumar A, Eapen SJ, Ramana KV. Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett Appl Microbiol 2009;48:58–64.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 39.

    Dinu A, Kumar A, Aravind R, Eapen SJ. Novel in planta assay for selection of antagonistic bacteria against Phytophthora capsici on black pepper (Piper nigrum L). J Spices Aromatic Crops 2007;16:1–7.Google Scholar

  • 40.

    Jung SW, Kim BH, Katano T, Kong DS, Han MS. Pseudomonas fluorescens HYK0210-SK09 offers species-specific biological control of winter algal blooms caused by freshwater diatom Stephanodiscus hantzschii. J Appl Microbiol 2008;105:186–95.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 41.

    Kim, BS, Lee JY, Hwang BK. In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag Sci 2000;56:12.Google Scholar

  • 42.

    Kim BS. Production of medium chain length polyhydroxyalkanoates by fed-batch culture of Pseudomonas oleovorans. Biotechnol Lett 2002;24:125–30.CrossrefGoogle Scholar

  • 43.

    Rosales AM, Thomashow L, Cook RJ, Mew TW. Isolation and identification of antifungal metabolites produced by rice-associated antagonistic Pseudomonas spp. Phytopathology 1995;85:1028–32.CrossrefGoogle Scholar

  • 44.

    Mao S, Lee SJ, Hwangbo H, Kim YW, Park KH, Cha GS, et al. Isolation and characterization of antifungal substances from Burkholderia sp. culture broth. Curr Microbiol 2006;53:358–64.PubMedCrossrefGoogle Scholar

  • 45.

    Veses V, Richards A, Gow NA. Vacuoles and fungal biology. Curr Opin Microbiol 2008;11:503–10.Web of ScienceCrossrefPubMedGoogle Scholar

  • 46.

    Sid A, Ezziyyani M, Egea-Gilabert C, Candela ME. Selecting bacterial strains for use in the biocontrol of diseases caused by Phytophthora capsici and Alternaria alternata in sweet pepper plants. Biol Plant 2003;47:569–74.Google Scholar

  • 47.

    Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S. Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int J Mol Sci 2010;11:5095–108.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 48.

    Sang MK, Chun S, Kim KD. Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biol Control 2008;46:424–33.Web of ScienceCrossrefGoogle Scholar

  • 49.

    Ji X, Lu G, Gai Y, Gao H, Lu B, Kong L, et al. Colonization of Morusalba L. by the plant-growth-promoting and antagonistic bacterium Burkholderia cepacia strain Lu10-1. BMC Microbiol 2010;10:243.CrossrefGoogle Scholar

  • 50.

    Islam S, Akanda MA, Prova A, Islam MT, Hossain MM. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol 2016;6:1360.Web of SciencePubMedGoogle Scholar

About the article

Received: 2017-04-16

Revised: 2017-10-25

Accepted: 2017-12-18

Published Online: 2018-02-03

Published in Print: 2018-02-23

Competing interests: The authors have declared that there are no conflicts of interests that could be observed as influencing the impartiality of this paper.

Author contributions: A.K. performed experiments, analyzed data, and drafted the manuscript. T.F. and A.A.S performed data collection. T.I., S.M.N.I., M.R., and H.M.W. supervised the design of the study and data analysis, and revised the manuscript. All authors critically reviewed the manuscript for intellectual content and gave final approval for the version to be published.

Citation Information: Zeitschrift für Naturforschung C, Volume 73, Issue 3-4, Pages 123–135, ISSN (Online) 1865-7125, ISSN (Print) 0939-5075, DOI: https://doi.org/10.1515/znc-2017-0065.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in