Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung C

A Journal of Biosciences

Editor-in-Chief: Seibel, Jürgen

Editorial Board: Aigner , Achim / Boland, Wilhelm / Bornscheuer, Uwe / Hoffmann, Klaus


IMPACT FACTOR 2017: 0.882
5-year IMPACT FACTOR: 0.912

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.288
Source Normalized Impact per Paper (SNIP) 2017: 0.448

Online
ISSN
1865-7125
See all formats and pricing
More options …
Volume 73, Issue 5-6

Issues

Endophytic Bacillus spp. from medicinal plants inhibit mycelial growth of Sclerotinia sclerotiorum and promote plant growth

Most Waheda Rahman Ansary
  • Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Md Ferdous Rezwan Khan Prince
  • Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Effi Haque
  • Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Farzana Sultana
  • Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Helen M. West
  • School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Md Mahbubur Rahman
  • Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Md Abdul Mojid Mondol
  • School of Science and Technology, Bangladesh Open University, Board Bazar, Gazipur 1705, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abdul Mannan Akanda
  • Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mahfuz Rahman / Michele L. Clarke / Md Tofazzal Islam
  • Corresponding author
  • Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-11 | DOI: https://doi.org/10.1515/znc-2018-0002

Abstract

Plant growth-promoting bacteria that are also capable of suppressing plant pathogenic fungi play an important role in sustainable agriculture. There is a critical need for conducting research to discover, characterize and evaluate the efficacy of new strains of such bacteria in controlling highly aggressive plant pathogens. In this study, we isolated endophytic bacteria from medicinal plants of Bangladesh and evaluated their antagonistic capacity against an important phytopathogenic fungus Sclerotinia sclerotiorum. Growth-promoting effects of those isolates on cucumber and rice seedlings were also assessed. Among 16 morphologically distinct isolates, BDR-2, BRtL-2 and BCL-1 significantly inhibited the growth of S. sclerotiorum through induction of characteristic morphological alterations in hyphae and reduction of mycelial dry weight. When cucumber and rice seeds were treated with these endophytic bacteria, seven isolates (BCL-1, BDL-1, BRtL-2, BRtL-3, BDR-1, BDR-2 and BBoS-1) enhanced seed germination, seedling vigor, seedling growth and number of roots per plant at a varying level compared to untreated controls. All isolates produced high levels of indole-3-acetic acid (6 to 63 μg/mL) in vitro. Two most potential isolates, BDR-2 and BRtL-2, were identified as Bacillus amyloliquefaciens and B. subtilis, respectively, based on the 16S rRNA gene sequencing. These results suggest that endophytic Bacillus species from native medicinal plants have great potential for being used as natural plant growth promoter and biopesticides in sustainable crop production.

Keywords: biological control; endophytic bacteria; growth promoter; Sclerotinia sclerotiorum

References

  • 1.

    Sturz AV, Christie BR, Nowak J. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 2000;19:1–302.CrossrefGoogle Scholar

  • 2.

    Khan MM, Haque E, Paul NC, Khaleque MA, Al-Garni SM, Rahman M, et al. Enhancement of growth and grain yield of rice in nutrient deficient soils by rice probiotic bacteria. Rice Sci 2017;24:264–73.Web of ScienceCrossrefGoogle Scholar

  • 3.

    Rahman M, Sabir AA, Mukta JA, Khan MM, Mohi-Ud-Din M, Miah MG, et al. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Scientific Rep 2018;8:2504.CrossrefWeb of ScienceGoogle Scholar

  • 4.

    Hurek T, Reinhold-Hurek B. Azoarcus spp. strain BH72 as a model for nitrogen fixing grass endophytes. J Biotechnol 2003;106:169–78.CrossrefGoogle Scholar

  • 5.

    Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S. Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne peronosporomycetes. Appl Environ Microbiol 2005;71:3786–96.CrossrefPubMedGoogle Scholar

  • 6.

    Islam MT, Hossain MM. Biological control of Peronosporomycete phytopathogens by bacterial antagonists. In: Maheshwari DK, editor. Bacteria in agrobiology: disease management. Berlin-Heidelberg: Springer-Verlag, 2013:167–218.Google Scholar

  • 7.

    Zohara F, Akanda MA, Paul NC, Rahman M, Islam MT. Inhibitory effects of Pseudomonas spp. on plant pathogen Phytophthora capsici in vitro and in planta. Biocat Agric Biotechnol 2016;5:69–77.Google Scholar

  • 8.

    Mukta JA, Rahman M, Sabir AA, Gupta DR, Surovy MZ, Rahman M, et al. Chitosan and plant probiotics application enhance growth and yield of strawberry. Biocat Agric Biotechnol 2017;11:9–18.Google Scholar

  • 9.

    Islam MT, Rahman MM, Pandey P, Jha CK, Aeron A. Bacilli and agrobiotechnology. Switzerland: Springer International Publishing AG, 2017:1–416.Google Scholar

  • 10.

    Kevin VJ. Plant growth promoting rhizobacteria as biofertilizer. Plant Soil 2003;255:571–86.CrossrefGoogle Scholar

  • 11.

    Yobo KS, Laing MD, Hunter CH. Effect of commercially available rhizobacteria strains on growth and production of lettuce, tomato and pepper. South Afr J Plant Soil 2004;21:230–5.CrossrefGoogle Scholar

  • 12.

    Khatun A, Farhana T, Sabir AA, Islam SM, West HM, Rahman M, et al. Pseudomonas and Burkholderia inhibit growth and asexual development of Phytophthora capsici. Z Naturforsch 2018;73:123–35.CrossrefWeb of ScienceGoogle Scholar

  • 13.

    Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 2007;25:1007–14.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 14.

    Dutta S, Surovy MZ, Gupta DR, Mahmud NU, Chanclud E, Win J, et al. Genomic analyses reveal that biocontrol of wheat blast by Bacillus spp. may be linked with production of antimicrobial compounds and induced systemic resistance in host plants. 2018. https://doi.org/10.6084/m9.figshare.5852661.v1?.

  • 15.

    Lucangeli C, Bottini R. Effects of Azospirillum spp. on endogenous gibberellin content and growth of maize (Zea mays L.) treated with uniconazole. Symbiosis 1997;23:63–72.Google Scholar

  • 16.

    Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009;321:305–39.Web of ScienceCrossrefGoogle Scholar

  • 17.

    Islam MT, Hossain MM. Plant probiotics in phosphorus nutrition in crops, with special reference to rice. In: Maheshwari DK, editor. Bacteria in agrobiology: plant probiotics. Berlin, Heidelberg: Springer, 2012:325–63.Google Scholar

  • 18.

    Purdy LH. Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 1979;69:875–80.CrossrefGoogle Scholar

  • 19.

    Agrios GN. Plant pathology. San Diego, CA: Academic Press, 1997.Google Scholar

  • 20.

    Bais HP, Fall R, Vivanco JM. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 2004;134:307–19.CrossrefPubMedGoogle Scholar

  • 21.

    Prova A, Akanda MA, Islam S, Sultana F, Islam MT, Hossain MM. First report of stem and pod blight of hyacinth bean caused by Sclerotinia sclerotiorum. J Plant Pathol 2014;96:607.Google Scholar

  • 22.

    Somasegaran P, Hoben HJ. Handbook for rhizobia: methods in legume-rhizobium technology. New York: Springer-Verlag, 1994:332–41.Google Scholar

  • 23.

    Bergey DH, Holt JG, Noel RK. Bergey’s manual of systematic bacteriology, 9th ed. Baltimore, MD: Williams and Wilkins, 1994:1935–2045.Google Scholar

  • 24.

    Hayward AC. A method for characterizing Pseudomonas solanacearum. Nature (London) 1960;186:405.CrossrefGoogle Scholar

  • 25.

    Rajat RM, Ninama GL, Mistry K, Parmar R, Patel K, Vegad MM. Antibiotic resistance pattern in Pseudomonas aeruginosa species isolated at a tertiary care hospital, Ahmadabad. National J Med Res 2012;2:156–9.Google Scholar

  • 26.

    Deora A, Hashidoko Y, Islam MT, Tahara S. Antagonistic rhizoplane bacteria induce diverse morphological alterations in Peronosporomycete hyphae during in vitro interaction. Eur J Plant Pathol 2006;112:311–22.Google Scholar

  • 27.

    Bric JM, Bostock RM, Silverstone SE. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 1991;57:535–8.PubMedGoogle Scholar

  • 28.

    Gordon SA, Weber RP. Colorimetric estimation of indole acetic acid. Plant Physiol 1951;26:192–5.PubMedCrossrefGoogle Scholar

  • 29.

    Fernando WG, Nakkeeran S, Zhang Y, Savchuk S. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 2007;26:100–7.Web of ScienceCrossrefGoogle Scholar

  • 30.

    Rahman MM, Hossain DM, Suzuki K, Shiiya A, Suzuki K, Dey TK, et al. Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Australasian Plant Pathol 2016;45:103–17.CrossrefWeb of ScienceGoogle Scholar

  • 31.

    Zhang JS, Xue AG. Biocontrol of sclerotinia stem rot (Sclerotinia sclerotiorum) of soybean using novel Bacillus subtilis strain SB24 under control conditions. Plant Pathol 2010;59:382–91.CrossrefWeb of ScienceGoogle Scholar

  • 32.

    Borriss R. Phytostimulation and biocontrol by plant-associated Bacillus amyloliquefaciens FZB42: an update. In: Islam MT, Rahman M, Pandey P, Jha CK, Aeron A, editors. Bacilli and agrobiotechnology. Switzerland: Springer International Publishing AG, 2017:163–84.Google Scholar

  • 33.

    Expert JM, Digat B. Biocontrol of Sclerotinia wilt of sunflower by Pseudomonas fluorescens and Pseudomonas putida strains. Can J Microbiol 1995;41:685–91.CrossrefGoogle Scholar

  • 34.

    Mondol MA, Shin HJ, Islam MT. Diversity of secondary metabolites from marine Bacillus species: chemistry, biosynthesis and biological activity. Marine Drugs 2013;11:2846–72.PubMedCrossrefGoogle Scholar

  • 35.

    Ouhaibi-Ben Abdeljalil N, Vallance J, Gerbore J, Rey P, Daami-Remadi M. Bio-suppression of Sclerotinia stem rot of tomato and biostimulation of plant growth using tomato-associated rhizobacteria. J Plant Pathol Microbiol 2016;7:2.Google Scholar

  • 36.

    Kandel SL, Hershberger N, Kim SH, Doty SL. Diazotrophic endophytes of poplar and willow for growth promotion of rice plants in nitrogen-limited conditions. Crop Sci 2015;55:1765–72.Web of ScienceCrossrefGoogle Scholar

  • 37.

    Mishra M, Kumar U, Mishra PK, Prakash V. Efficiency of plant growth promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Adv Biol Res 2010;4:92–6.Google Scholar

  • 38.

    Rathaur P, Raja W, Ramteke PW, John SA. Effect of UV-B tolerant plant growth promoting rhizobacteria (PGPR) on seed germination and growth of Withania somnifera. Adv Appl Sci Res 2012;3:1399–404.Google Scholar

  • 39.

    Gholami A, Shahsavani S, Nezarat S. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. World Acad Sci Engin Technol 2009;3:25.Google Scholar

About the article

Corresponding author: Md. Tofazzal Islam, Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh, Tel.: +88-02-9205310-14 Extn. 2252, Fax: +88-02-9205333


Received: 2018-01-03

Revised: 2018-03-06

Accepted: 2018-03-13

Published Online: 2018-04-11

Published in Print: 2018-04-25


Citation Information: Zeitschrift für Naturforschung C, Volume 73, Issue 5-6, Pages 247–256, ISSN (Online) 1865-7125, ISSN (Print) 0939-5075, DOI: https://doi.org/10.1515/znc-2018-0002.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in