Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung C

A Journal of Biosciences

Editor-in-Chief: Seibel, Jürgen

Editorial Board: Aigner , Achim / Boland, Wilhelm / Bornscheuer, Uwe / Hoffmann, Klaus

IMPACT FACTOR 2018: 1.000

CiteScore 2018: 0.99

SCImago Journal Rank (SJR) 2018: 0.246
Source Normalized Impact per Paper (SNIP) 2018: 0.437

See all formats and pricing
More options …
Volume 74, Issue 11-12


Fisetin effects on cell proliferation and apoptosis in glioma cells

Fulya Pak
  • Graduated School of Natural and Applied Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pinar Oztopcu-Vatan
  • Corresponding author
  • Faculty of Arts and Sciences, Department of Biology, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey, Phone: +90 222 239 37 50
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-08-17 | DOI: https://doi.org/10.1515/znc-2019-0098


This research investigated the antiproliferative effects of 1–500 μM fisetin in T98G and BEAS-2B cells by MTT assay. The IC50 of fisetin in T98G cells for 24 and 48 h were 93 and 75 μM, respectively. Apoptotic alterations of fisetin-treated T98G cells were observed by transmission electron microscopy. BEAS-2B was then used in comparison to T98G cells to determine the cytotoxic effects of fisetin. The IC50 of fisetin for 24 and 48 h were recorded as 270 and 90 μM in BEAS-2B cells, respectively. Different concentrations of fisetin were selected to determine the apoptotic and necrotic effects. Consequently, fisetin was determined to have more apoptotic effects in T98G than BEAS-2B cells, dose- and time-dependently. Moreover, fisetin was found to have cytotoxicity at lower doses in T98G cells compared to carmustine, as positive control. CASPASE 3, CASPASE 9, CASPASE 8, and BAX expressions were increased by the selected fisetin doses of 25 and 50 μM, while that of BCL-2 and survivin was reduced in T98G cells. These results will serve as an essential basis of future in vitro and in vivo studies, in the continuous search for alternative treatment agents for gliomas.

Keywords: cytotoxicity; fisetin; glioma; RT-PCR; TEM


  • 1.

    Ponder BA. Cancer genetics. Nature 2001;411:336–41.CrossrefPubMedGoogle Scholar

  • 2.

    Maher EA, Brennan C, Wen PY, Durso L, Ligon KL, Richardson A, et al. Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res 2006;66:11502–13.PubMedCrossrefGoogle Scholar

  • 3.

    Das A, Banik NL, Ray SK. N-(4-hydroxyphenyl) retinamide induced both differentiation and apoptosis in human glioblastoma T98G and U87MG cells. Brain Res 2008;1227:207–15.CrossrefWeb of SciencePubMedGoogle Scholar

  • 4.

    Reithmeier T, Graf E, Piroth T, Trippel M, Pinsker MO, Nikkhah G. BCNU for recurrent glioblastoma multiforme: efficacy, toxicity and prognostic factors. BMC Cancer 2010;10:30.Web of ScienceCrossrefPubMedGoogle Scholar

  • 5.

    Choi EJ. Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: involvement of CDK4 and p21. Nutr Cancer 2007;59:115–9.PubMedCrossrefGoogle Scholar

  • 6.

    Ben Sghaier M, Skandrani I, Nasr N, Franca MG, Chekir-Ghedira L, Ghedira K. Flavonoids and sesquiterpenes from Tecurium ramosissimum promote antiproliferation of human cancer cells and enhance antioxidant activity: a structure–activity relationship study. Environ Toxicol Pharmacol 2011;32:336–48.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 7.

    Kashyap D, Sharma A, Sak K, Tuli HS, Buttar HS, Bishayee A. Fisetin: a bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sci 2018;194:75–87.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 8.

    Constantin RP, Constantin J, Pagadigorria CL, Ishii-Iwamoto EL, Bracht A, de Castro CV, et al. Prooxidant activity of fisetin: effects on energy metabolism in the rat liver. J Biochem Mol Toxicol 2011;25:117–26.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 9.

    Touil YS, Seguin J, Scherman D, Chabot GG. Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma–bearing mice. Cancer Chemother Pharmacol 2011;68:445–55.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 10.

    Ying T-H, Yang S-F, Tsai S-J, Hsieh SC, Huang YC, Bau DT, et al. Fisetin induces apoptosis in human cervical cancer HeLa cells through ERK1/2-mediated activation of caspase-8-/caspase-3–dependent pathway. Arch Toxicol 2012;86:263–73.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 11.

    Haddad AQ, Fleshner N, Nelson C, Saour B, Musquera M, Venkateswaran V, et al. Antiproliferative mechanisms of the flavonoids 2,2′-dihydroxychalcone and fisetin in human prostate cancer cells. Nutr Cancer 2010;62:668–81.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 12.

    Li J, Cheng Y, Qu W, Sun Y, Wang Z, Wang H, et al. Fisetin, a dietary flavonoid, induces cell cycle arrest and apoptosis through activation of p53 and inhibition of NF-kappa B pathways in bladder cancer cells. Basic Clin Pharmacol Toxicol 2011;108:84–93.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 13.

    Kim JY, Jeon YK, Jeon W, Nam MJ. Fisetin induces apoptosis in Huh-7 cells via downregulation of BIRC8 and Bcl2L2. Food Chem Toxicol 2010;48:2259–64.Web of ScienceCrossrefPubMedGoogle Scholar

  • 14.

    Lee S, Kim Y-J, Kwon S, Lee Y, Choi SY, Park J, et al. Inhibitory effects of flavonoids on TNF-alpha–induced IL-8 gene expression in HEK 293 cells. BMB Rep 2009;42:265–70.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 15.

    Oztopcu-Vatan P, Sayitoglu M, Gunindi M, Inan E. Cytotoxic and apoptotic effects of menadione on rat hepatocellular carcinoma cells. Cytotechnology 2015;67:1003–9.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 16.

    Harhaji-Trajkovic L, Vilimanovich U, Kravic-Stevovic T, Bumbasirevic V, Trajkovic V. AMPK-mediated autophagy inhibits apoptosis in cisplatin-treated tumour cells. J Cell Mol Med 2009;13:3644–54.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 17.

    Yildiz-Ozer M, Oztopcu-Vatan P, Kus G. The investigation of ceranib-2 on apoptosis and drug interaction with carboplatin in human non small cell lung cancer cells in vitro. Cytotechnology 2018;70:387–96.CrossrefWeb of SciencePubMedGoogle Scholar

  • 18.

    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc 2008;3:1101–8.CrossrefWeb of ScienceGoogle Scholar

  • 19.

    Brunetti A, Marinelli O, Morelli MB, Iannarelli R, Amantini C, Russotti D, et al. Isofuranodiene synergizes with temozolomide in inducing glioma cells death. Phytomedicine 2019;52:51–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • 20.

    So FV, Guthrie N, Chambers AF, Carroll KK. Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Lett 1997;112:127–33.CrossrefPubMedGoogle Scholar

  • 21.

    Chen Y-C, Shen S-C, Lee W-R, Lin HY, Ko CH, Shih CM, et al. Wogonin and fisetin induction of apoptosis through activation of caspase 3 cascade and alternative expression of p21 protein in hepatocellular carcinoma cells SK-HEP-1. Arch Toxicol 2002;76:351–9.PubMedCrossrefGoogle Scholar

  • 22.

    Lu X, Jung Ji, Cho HJ, Lim DY, Lee HS, Chun HS, et al. Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells. J Nutr 2005;135:2884–90.CrossrefPubMedGoogle Scholar

  • 23.

    Chen C-M, Hsieh Y-H, Hwang J-M, Jan HJ, Hsieh SC, Lin SH, et al. Fisetin suppresses ADAM9 expression and inhibits invasion of glioma cancer cells through increased phosphorylation of ERK1/2. Tumor Biol 2015;36:3407–15.CrossrefWeb of ScienceGoogle Scholar

  • 24.

    Adan A, Baran Y. The pleiotropic effects of fisetin and hesperetin on human acute promyelocytic leukemia cells are mediated through apoptosis, cell cycle arrest, and alterations in signaling networks. Tumor Biol 2015;36:8973–84.Web of ScienceCrossrefGoogle Scholar

  • 25.

    Sun X, Ma X, Li Q, Yang Y, Xu X, Sun J, et al. Anti-cancer effects of fisetin on mammary carcinoma cells via regulation of the PI3K/Akt/mTOR pathway: in vitro and in vivo studies. Int J Mol Med 2018;42:811–20.Web of ScienceGoogle Scholar

  • 26.

    Szeliga M, Zgrzywa A, Obara-Michlewska M, Albrecht J. Transfection of a human glioblastoma cell line with liver-type glutaminase (LGA) down-regulates the expression of DNA-repair gene MGMT and sensitizes the cells to alkylating agents. J Neurochem 2012;123:428–36.Web of SciencePubMedCrossrefGoogle Scholar

  • 27.

    Khan N, Afaq F, Syed DN, Mukhtar H. Fisetin, a novel dietary flavonoid, causes apoptosis and cell cycle arrest in human prostate cancer LNCaP cells. Carcinogenesis 2008;29:1049–56.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 28.

    Klimaszewska-Wisniewska A, Halas-Wisniewska M, Tadrowski T, Gagat M, Grzanka D, Grzanka A. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non–small cell lung cancer cells. Cancer Cell Int 2016;16:10.Web of ScienceCrossrefPubMedGoogle Scholar

  • 29.

    Kim S, Choi KJ, Cho S-J, Yun SM, Jeon JP, Koh YH, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep 2016;6:24933.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 30.

    Park B-S, Choi N-E, Lee JH, Kang HM, Yu SB, Kim HJ, et al. Crosstalk between fisetin-induced apoptosis and autophagy in human oral squamous cell carcinoma. J Cancer 2019;10:138–46.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 31.

    Youns M, Abdel Halim Hegazy W. The natural flavonoid fisetin inhibits cellular proliferation of hepatic, colorectal, and pancreatic cancer cells through modulation of multiple signaling pathways. PLoS One 2017;2:e0169335.Web of ScienceGoogle Scholar

  • 32.

    Lee W-R, Shen S-C, Lin H-Y, Hou WC, Yang LL, Chen YC. Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca2+-dependent endonuclease. Biochem Pharmacol 2002;63:225–36.CrossrefGoogle Scholar

About the article

Received: 2019-05-16

Revised: 2019-07-12

Accepted: 2019-07-18

Published Online: 2019-08-17

Published in Print: 2019-11-26

Conflict of interest: The authors declare no conflict of interest.

Citation Information: Zeitschrift für Naturforschung C, Volume 74, Issue 11-12, Pages 295–302, ISSN (Online) 1865-7125, ISSN (Print) 0939-5075, DOI: https://doi.org/10.1515/znc-2019-0098.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in