Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung C

A Journal of Biosciences

Editor-in-Chief: Seibel, Jürgen

Editorial Board: Aigner , Achim / Boland, Wilhelm / Bornscheuer, Uwe / Hoffmann, Klaus


IMPACT FACTOR 2018: 1.000

CiteScore 2018: 0.99

SCImago Journal Rank (SJR) 2018: 0.246
Source Normalized Impact per Paper (SNIP) 2018: 0.437

Online
ISSN
1865-7125
See all formats and pricing
More options …
Volume 74, Issue 5-6

Issues

Bioflavonoids protect cells against halogenated boroxine-induced genotoxic damage by upregulation of hTERT expression

Maida Hadzic
  • Corresponding author
  • Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sanin Haveric
  • Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anja Haveric
  • Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Naida Lojo-Kadric
  • Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Borivoj Galic
  • Faculty of Science, Department for Chemistry, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jasmin Ramic
  • Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lejla Pojskic
  • Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-13 | DOI: https://doi.org/10.1515/znc-2018-0132

Abstract

Plant bioflavonoids are widely present in the human diet and have various protective properties. In this study, we have demonstrated the capacity of delphinidin and luteolin to increase human telomerase reverse transcriptase (hTERT) expression level and act as protective agents against halogenated boroxine-induced genotoxic damage. Halogenated boroxine K2(B3O3F4OH) (HB), is a novel compound with potential for the treatment of both benign and malignant skin changes. In vivo and in vitro studies have confirmed the inhibitory effects of HB on carcinoma cell proliferation and cell cycle progression as well as enzyme inhibition. However, minor genotoxic effects of HB are registered in higher applied concentrations, but those can be suppressed by in vitro addition of delphinidin and luteolin in appropriate concentrations. Fresh peripheral blood samples were cultivated for 72 h followed by independent and concomitant treatments of HB with luteolin or delphinidin. We analyzed the differences in relative hTERT expression between series of treatments compared with controls, which were based on normalized ratios with housekeeping genes. The obtained results have shown that selected bioflavonoids induce upregulation of hTERT that may contribute to the repair of genotoxic damage in vitro.

Keywords: delphinidin; halogenated boroxine; hTERT; luteolin; relative gene expression; telomere

References

  • 1.

    Ren W, Qiao Z, Wang H, Zhu L, Zhang L. Flavonoids: promising anticancer agents. Med Res Rev 2003;23:519–34.PubMedCrossrefGoogle Scholar

  • 2.

    Ezic J, Kugic A, Hadzic M, Haveric A, Bajrovic K, Haveric S. Analysis of delphinidin and luteolin genotoxicity in human lymphocyte culture. J Health Sci 2015;5:41–5.CrossrefGoogle Scholar

  • 3.

    Hadzic M, Haveric S, Haveric A, Galic B. Inhibitory effects of delphinidin and luteolin on genotoxicity induced by K2(B3O3F4OH) in human lymphocytes in vitro. Biologia 2015;70:553–8.Web of ScienceGoogle Scholar

  • 4.

    Galic B. Boroxine composition for removal of skin changes. Patent US 8,278,289B2, 2 October 2012.Google Scholar

  • 5.

    Galic B. Removal of skin changes. Patent EP 1,996,514B1, 31 July 2013.Google Scholar

  • 6.

    Haveric S, Haveric A, Bajrovic K, Galic B, Maksimovic M. Effects of dipotassium trioxohydroxytetrafluorotriborate (K2[B3O3F4OH]) on genetic material and inhibition of cell division in human cell cultures. Drug Chem Toxicol 2011;34:250–4.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 7.

    Pojskic L, Haveric S, Lojo-Kadric N, Hadzic M, Haveric A, Galic Z, et al. Effects of dipotassium-trioxohydroxytetrafluorotriborate, K2[B3O3F4OH], on cell viability and gene expression of common human cancer drug targets in a melanoma cell line. J Enzyme Inhib Med Chem 2016;31:999–1004.CrossrefWeb of ScienceGoogle Scholar

  • 8.

    Islamovic S, Galic B, Milos M. A study of the inhibition of catalase by dipotassium trioxohydroxytetrafluorotriborate K2[B3O3F4OH]. J Enzyme Inhib Med Chem 2014;29:744–8.CrossrefWeb of SciencePubMedGoogle Scholar

  • 9.

    Vullo D, Milos M, Galic B, Scozzafava A, Supuran CT. Dipotassium trioxohydroxytetrafluorotriborate K2[B3O3F4OH], is a potent inhibitor of human carbonic anhydrases. J Enzyme Inhib Med Chem 2015;30:341–4.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 10.

    Haveric S, Hadzic M, Haveric A, Mijanovic M, Hadziselimovic R, Galic B. Genotoxicity evaluation of dipotassium-trioxohydroxytetrafluorotriborate, K2(B3O3F4OH), in human lymphocyte cultures and mice reticulocytes. Braz Arch Biol Technol 2016;59:e16160195.Web of ScienceGoogle Scholar

  • 11.

    Cortés F, Pastor N, Mateos S, Domínguez I. Roles of DNA topoisomerases in chromosome segregation and mitosis. Mutat Res 2003;543:59–66.PubMedCrossrefGoogle Scholar

  • 12.

    Blasco MA, Hahn WC. Evolving views of telomerase and cancer. Trends Cell Biol 2013;13:289–94.Google Scholar

  • 13.

    Shin KH, Kang MK, Dicterow E, Kameta A, Baluda MA, Park NH. Introduction of human telomerase reverse transcriptase to normal human fibroblasts enhances DNA repair capacity. Clin Cancer Res 2004;10:2551–60.CrossrefPubMedGoogle Scholar

  • 14.

    Zhou J, Ding D, Wang M, Cong YS. Telomerase reverse transcriptase in the regulation of gene expression. BMB Reports 2014;47:8–14.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 15.

    George VC, Rupasinghe HP. Apple flavonoids suppress carcinogen-induced DNA damage in normal human bronchial epithelial cells. Oxid Med Cell Longev 2017;2017:1767198.PubMedWeb of ScienceGoogle Scholar

  • 16.

    Gavande NS, Vere-Carozza PS, Hinshaw HD, Jalal SI, Sears CR, Pawelczak KS, et al. DNA repair targeted therapy: the past or future of cancer treatment? Pharmacol Ther 2016;160:65–83.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 17.

    Hsieh MH, Chen YT, Chen YT, Lee XH, Lu J, Chien CL, et al. PARP1 controls KLF4-mediated telomerase expression in stem cells and cancer cells. Nucl Acid Res 2017;45:10492–503.CrossrefGoogle Scholar

  • 18.

    Peterson SE, Stellwagen AE, Diede SJ, Singer MS, Haimberger ZW, Johnson CO, et al. The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nat Genet 2001;27:64–7.PubMedCrossrefGoogle Scholar

  • 19.

    Holt SE, Aisner DL, Baur J, Tesmer VM, Dy M, Ouellette M, et al. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 1999;13:817–26.PubMedCrossrefGoogle Scholar

  • 20.

    Ryss IG, Slutskaya MM. Report on the platinum sector. Dokl Akad Nauk SSSR 1951;26:216.Google Scholar

  • 21.

    Fenech M. Cytokinesis-block micronucleus assay. Nat Protoc 2007;2:1084–104.CrossrefWeb of ScienceGoogle Scholar

  • 22.

    Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001;29:e45.PubMedCrossrefGoogle Scholar

  • 23.

    Masutomi K, Possemato R, Wong JM, Currier JL, Tothova Z, Manola JB, et al. The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci USA 2005;102:8222–7.CrossrefGoogle Scholar

  • 24.

    Fleisig HB, Hukezalie KR, Thompson CA, Au-Yeung TT, Ludlow AT, Zhao CR, et al. Telomerase reverse transcriptase expression protects transformed human cells against DNA-damaging agents, and increases tolerance to chromosomal instability. Oncogene 2016;35:218–27.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 25.

    Pandita RK, Chow TT, Udayakumar D, Bain AL, Cubeddu L, Hunt CR, et al. Single-strand DNA-binding protein SSB1 facilitates TERT recruitment to telomeres and maintains telomere G-overhangs. Cancer Res 2015;75:858–69.CrossrefWeb of SciencePubMedGoogle Scholar

  • 26.

    Sharma GG, Gupta A, Wang H, Scherthan H, Dhar S, Gandhi V, et al. hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene 2003;22:131–46.PubMedCrossrefGoogle Scholar

  • 27.

    Luca VS, Miron A, Aprotosoaie AC. The antigenotoxic potential of dietary flavonoids. Phytochem Rev 2016;15:591–625.CrossrefWeb of ScienceGoogle Scholar

  • 28.

    Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, et al. The antitumor activities of flavonoids. In Vivo 2005;19:895–909.PubMedGoogle Scholar

  • 29.

    George VC, Dellaire G, Rupasinghe HP. Plant flavonoids in cancer chemoprevention: role in genome stability. J Nutr Biochem 2017;45:1–14.Web of ScienceCrossrefPubMedGoogle Scholar

  • 30.

    Collins AR, Harrington V, Drew J, Melvin R. Nutritional modulation of DNA repair in a human intervention study. Carcinogenesis 2003;24:511–5.CrossrefGoogle Scholar

  • 31.

    Ramos AA, Pereira-Wilson C, Collins AR. Protective effects of ursolic acid and luteolin against oxidative DNA damage include enhancement of DNA repair in Caco-2 cells. Mutat Res 2010;692:6–11.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 32.

    Kanakis CD, Tarantilis PA, Polissiou MG, Diamantoglou S, Tajmir-Riahi HA. DNA interaction with naturally occurring antioxidant flavonoids quercetin, kaempferol, and delphinidin. J Biomol Struct Dyn 2005;22:719–24.PubMedCrossrefGoogle Scholar

  • 33.

    Tawani A, Kumar A. Structural insight into the interaction of flavonoids with human telomeric sequence. Sci Rep 2015;5:17574.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 34.

    Lamy E, Goetz V, Erlacher M, Herz C, Mersch-Sundermann V. hTERT: another brick in the wall of cancer cells. Mutat Res 2013;752:119–28.PubMedWeb of ScienceCrossrefGoogle Scholar

About the article

aDeceased.


Received: 2018-08-30

Revised: 2018-11-02

Accepted: 2018-11-23

Published Online: 2018-12-13

Published in Print: 2019-05-27


Citation Information: Zeitschrift für Naturforschung C, Volume 74, Issue 5-6, Pages 125–129, ISSN (Online) 1865-7125, ISSN (Print) 0939-5075, DOI: https://doi.org/10.1515/znc-2018-0132.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Zhixi Chen, Rui Zhang, Weimei Shi, Linfu Li, Hai Liu, Zhiping Liu, and Longhuo Wu
Journal of Agricultural and Food Chemistry, 2019

Comments (0)

Please log in or register to comment.
Log in