Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung C

A Journal of Biosciences

Editor-in-Chief: Seibel, Jürgen

Editorial Board: Aigner , Achim / Boland, Wilhelm / Bornscheuer, Uwe / Hoffmann, Klaus

IMPACT FACTOR 2017: 0.882
5-year IMPACT FACTOR: 0.912

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.288
Source Normalized Impact per Paper (SNIP) 2017: 0.448

See all formats and pricing
More options …
Volume 73, Issue 9-10


Bioactive compounds from bay leaves (Laurus nobilis) extracted by microwave technology

Diana B. Muñiz-Márquez
  • Group of Bioprocesses and Natural Products, School of Chemistry, Universidad Autónoma de Coahuila, 25280, Saltillo, Coahuila, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jorge E. Wong-Paz
  • Group of Bioprocesses and Natural Products, School of Chemistry, Universidad Autónoma de Coahuila, 25280, Saltillo, Coahuila, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juan C. Contreras-Esquivel
  • Group of Bioprocesses and Natural Products, School of Chemistry, Universidad Autónoma de Coahuila, 25280, Saltillo, Coahuila, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Raúl Rodríguez-Herrera
  • Group of Bioprocesses and Natural Products, School of Chemistry, Universidad Autónoma de Coahuila, 25280, Saltillo, Coahuila, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cristóbal N. AguilarORCID iD: http://orcid.org/0000-0001-5867-8672
Published Online: 2018-06-14 | DOI: https://doi.org/10.1515/znc-2018-0009


Laurus nobilis leaves contain flavored and bioactive components with relevant biological properties for human health that are attributed to an abundant presence of highly bioactive secondary metabolites. However, the separation process for these bioactive molecules from plant matrix is seriously limited by the presence of a physical barrier (cell wall). Thus, the use of novel extraction procedures to enhance their release is particularly important. In this work, the potential use of microwave-assisted extraction (MAE) as a tool to improve the extraction efficiency of bioactive compounds from bay leaves and their characterization was evaluated. The effects of irradiation time (3, 6 and 9 min) and aqueous ethanol concentration (0, 25 and 50%) on the extraction of phenolic compounds were evaluated. A response surface methodology was applied to determine the best extraction conditions by MAE. The maximum total phenolic compound under the best conditions (9 min time irradiation and aqueous ethanol 50%) was 10.63±0.91 mg gallic acid equivalent/g plant using MAE. Also, the antioxidant potential of the extracts obtained was evaluated.

Keywords: antioxidants; Laurus nobilis; microwave-assisted extraction; phenolic compounds; response surface methodology


  • 1.

    Santoyo S, Lloria R, Jaime, L, Ibañez E. Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurus nobilis L. chemical and functional characterization. Eur Food Res Technol 2006;222:565–71.CrossrefGoogle Scholar

  • 2.

    Simić M, Kundaković T, Kovačević N. Preliminary assay on the antioxidative activity of Laurus nobilis extracts. Fitoterapia 2003;74:613–6.CrossrefPubMedGoogle Scholar

  • 3.

    Elmastaş M, Gülcin İ, Isildak Ö, Küfrevioğlu Öİ, İbaoğlu K, Aboul-Enein HY. Radical scavenging activity and antioxidant capacity of bay leaf extracts. J Iran Chem Soc 2006;3:258–66.CrossrefGoogle Scholar

  • 4.

    Pacifico S, Gallicchio M, Lorenz P, Potenza N, Galasso S, Marciano S, et al. Apolar Laurus nobilis leaf extracts induce cytotoxicity and apoptosis towards three nervous system cell lines. Food Chem Toxicol 2013;62:628–37.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 5.

    El-Chaghaby GA, Ahmad AF, Ramis ES. Evaluation of the antioxidant and antibacterial properties of various solvents extracts of Annona squamosa L. leaves. Arab J Chem 2014;7:227–33.Web of ScienceCrossrefGoogle Scholar

  • 6.

    Ballard TS, Mallikarjunan P, Zhou K, O’Keefe S. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem 2010;120:1185–92.CrossrefWeb of ScienceGoogle Scholar

  • 7.

    Wang J, Sun B, Cao Y, Tian Y, Li X. Optimization of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem 2008;106:804–10.CrossrefGoogle Scholar

  • 8.

    Lucchesi ME, Chemat F, Smadja J. Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. J Chromatogr A 2004;1043:323–7.CrossrefPubMedGoogle Scholar

  • 9.

    Sun Y, Liu Z, Wang J. Ultrasound-assisted extraction of five isoflavones from Iris tectorum Maxim. Sep Purif Technol 2011;78:49–54.CrossrefWeb of ScienceGoogle Scholar

  • 10.

    Yan MM, Liu W, Fu YJ, Zu YG, Chen CY, Luo M. Optimization of the microwave-assisted extraction process for four main astragalosides in Radix Astragali. Food Chem 2010;119: 1663–70.CrossrefGoogle Scholar

  • 11.

    Muñiz DB, Martínez GC, Wong JE, Belmares R, Rodríguez R, Aguilar CN. Ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. and their antioxidant activity. Ultrason Sonochem 2013;20:1149–54.CrossrefWeb of SciencePubMedGoogle Scholar

  • 12.

    Boulila A, Hassen I, Haouari L, Mejri F, Amor IB, Casabianca H, et al. Enzyme-assisted extraction of bioactive compounds from bay leaves (Laurus nobilis L.). Ind Crops Prod 2015;74:485–93.Web of ScienceCrossrefGoogle Scholar

  • 13.

    Hao L, Han W, Huang S, Xue B, Deng X. Microwave-assisted extraction of artemisinin from Artemisia annua. Sep Purif Technol 2002;28:191–6.CrossrefGoogle Scholar

  • 14.

    Martins S, Aguilar CN, De la Garza I, Mussatto SI, Teixeira JA. Kinetic study of nordihydroguaiaretic acid recovery from Larrea tridentata by microwave-assisted extraction. J Chem Technol Biotechnol 2010;85:1142–7.CrossrefWeb of ScienceGoogle Scholar

  • 15.

    Song J, Li D, Liu C, Zhang Y. Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity. Innov Food Sci Emer Technol 2011;12:282–7.CrossrefGoogle Scholar

  • 16.

    Pan G, Yu G, Zhu C, Qiao J. Optimization of ultrasound-assisted extraction (UAE) of flavonoids compounds (FC) from hawthorn seed (HS). Ultrason Sonochem 2012;19:486–90.Web of SciencePubMedCrossrefGoogle Scholar

  • 17.

    Galvan d’ A, Kriaa L, Nikov KI, Dimitrov K. Ultrasonic assisted extraction of polyphenols from black chokeberry. Sep Purif Technol 2012;93:42–7.CrossrefGoogle Scholar

  • 18.

    Li H, Deng Z, Wuc T, Liu R, Loewen S, Tsao R. Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chem 2012;130:928–36.Web of ScienceCrossrefGoogle Scholar

  • 19.

    Upadhyay R, Ramalakshmi K, Mohan Rao J. Microwave-assisted extraction of chlorogenic acids from green coffee beans. Food Chem 2012;130:184–8.CrossrefWeb of ScienceGoogle Scholar

  • 20.

    Cochard H, Nardini A, Coll L. Hydraulic architecture of leaf blades: where is the main resistance? Plant Cell Environ 2004;27:1257–67.CrossrefGoogle Scholar

  • 21.

    Wu T, Yan J, Liu R, Marcone MF, Aisa HA, Tsao R. Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chem 2012;133:1292–8.CrossrefWeb of ScienceGoogle Scholar

  • 22.

    Makkar H. Quantification of tannins in tree foliage. A laboratory manual. Vienna: Food and Agriculture Organization/International Atomic Energy Agency, 1999.Google Scholar

  • 23.

    Oliveira I, Sousa A, Ferreira I, Bento A, Estevinho L, Pereira JA. Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food ChemToxicol 2008;46:2326–31.CrossrefGoogle Scholar

  • 24.

    Molyneux P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol 2004;26:211–9.Google Scholar

  • 25.

    Starzynska A, Stodolak B, Jamroz M. Antioxidant properties of extracts from fermented and cooked seeds of Polish cultivars of Lathyrus sativus. Food Chem 2008;109:285–92.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 26.

    Martínez CG, Aguilera AF, Rodríguez R, Aguilar CN. Fungal enhancement of the antioxidant properties of grape waste. Ann Microbiol 2011;62:922–30.Web of ScienceGoogle Scholar

About the article

Received: 2018-01-17

Revised: 2018-03-20

Accepted: 2018-04-16

Published Online: 2018-06-14

Published in Print: 2018-09-25

Citation Information: Zeitschrift für Naturforschung C, Volume 73, Issue 9-10, Pages 401–407, ISSN (Online) 1865-7125, ISSN (Print) 0939-5075, DOI: https://doi.org/10.1515/znc-2018-0009.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in