Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung C

A Journal of Biosciences

Editor-in-Chief: Seibel, Jürgen

Editorial Board: Aigner , Achim / Boland, Wilhelm / Bornscheuer, Uwe / Hoffmann, Klaus

12 Issues per year

IMPACT FACTOR 2017: 0.882
5-year IMPACT FACTOR: 0.912

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.288
Source Normalized Impact per Paper (SNIP) 2017: 0.448

See all formats and pricing
More options …
Ahead of print


Multienzymatic in situ hydrogen peroxide generation cascade for peroxygenase-catalysed oxyfunctionalisation reactions

Milja Pesic
  • Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sébastien Jean-Paul Willot
  • Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elena Fernández-Fueyo
  • Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Florian Tieves
  • Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miguel Alcalde / Frank Hollmann
  • Corresponding author
  • Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-31 | DOI: https://doi.org/10.1515/znc-2018-0137


There is an increasing interest in the application of peroxygenases in biocatalysis, because of their ability to catalyse the oxyfunctionalisation reaction in a stereoselective fashion and with high catalytic efficiencies, while using hydrogen peroxide or organic peroxides as oxidant. However, enzymes belonging to this class exhibit a very low stability in the presence of peroxides. With the aim of bypassing this fast and irreversible inactivation, we study the use of a gradual supply of hydrogen peroxide to maintain its concentration at stoichiometric levels. In this contribution, we report a multienzymatic cascade for in situ generation of hydrogen peroxide. In the first step, in the presence of NAD+ cofactor, formate dehydrogenase from Candida boidinii (FDH) catalysed the oxidation of formate yielding CO2. Reduced NADH was reoxidised by the reduction of the flavin mononucleotide cofactor bound to an old yellow enzyme homologue from Bacillus subtilis (YqjM), which subsequently reacts with molecular oxygen yielding hydrogen peroxide. Finally, this system was coupled to the hydroxylation of ethylbenzene reaction catalysed by an evolved peroxygenase from Agrocybe aegerita (rAaeUPO). Additionally, we studied the influence of different reaction parameters on the performance of the cascade with the aim of improving the turnover of the hydroxylation reaction.

This article offers supplementary material which is provided at the end of the article.

Keywords: formate dehydrogenase; hydrogen peroxide generation; old yellow enzyme; oxyfunctionalisation; peroxygenase


  • 1.

    Dong JJ, Fernández-Fueyo EE, Hollmann F, Paul CE, Pesic M, Schmid S, et al. Biocatalytic oxidation reactions: a chemist’s perspective. Angew Chem Int Ed 2018;57:9238–61.CrossrefGoogle Scholar

  • 2.

    Martínez AT, Ruiz-Dueñas FJ, Camarero S, Serrano A, Linde D, Lund H, et al. Oxidoreductases on their way to industrial biotransformations. Biotechnol Adv 2017;35:815–31.CrossrefWeb of SciencePubMedGoogle Scholar

  • 3.

    Hofrichter M, Ullrich R. Oxidations catalyzed by fungal peroxygenases. Curr Opin Chem Biol 2014;19:116–25.CrossrefWeb of SciencePubMedGoogle Scholar

  • 4.

    Wang Y, Lan D, Durrani R, Hollmann F. Peroxygenases en route to becoming dream catalysts. What are the opportunities and challenges? Curr Opin Chem Biol 2017;37:1–9.CrossrefWeb of SciencePubMedGoogle Scholar

  • 5.

    Bormann S, Gomez Baraibar A, Ni Y, Holtmann D, Hollmann F. Specific oxyfunctionalisations catalysed by peroxygenases: opportunities, challenges and solutions. Catal Sci Technol 2015;5:2038–52.Web of ScienceCrossrefGoogle Scholar

  • 6.

    Holtmann D, Hollmann F. The oxygen dilemma: a severe challenge for the application of monooxygenases? ChemBioChem 2016;17:1391–8.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 7.

    Joo H, Lin ZL, Arnold FH. Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 1999;399:670–3.CrossrefPubMedGoogle Scholar

  • 8.

    Choi DS, Ni Y, Fernández-Fueyo E, Lee M, Hollmann F, Park CB. Photoelectroenzymatic oxyfunctionalization on flavin-hybridized carbon nanotube electrode platform. ACS Catal 2017;7:1563–7.Web of ScienceCrossrefGoogle Scholar

  • 9.

    Krieg T, Huttmann S, Mangold KM, Schrader J, Holtmann D. Self-sustained enzymatic cascade for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural. Green Chem 2011;13:2686–9.Google Scholar

  • 10.

    Lutz S, Steckhan E, Liese A. First asymmetric electroenzymatic oxidation catalyzed by a peroxidase. Electrochem Commun 2004;6:583–7.CrossrefGoogle Scholar

  • 11.

    Zhang W, Fernández-Fueyo E, Ni Y, van Schie M, Gacs J, Renirie R, et al. Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations. Nat Catal 2018;1:55–62.CrossrefWeb of ScienceGoogle Scholar

  • 12.

    Zhang W, Burek BO, Fernández-Fueyo E, Alcalde M, Bloh JZ, Hollmann F. Selective activation of C−H bonds in a cascade process combining photochemistry and biocatalysis. Angew Chem 2017;129:15451–5.Web of ScienceGoogle Scholar

  • 13.

    Ni Y, Fernández-Fueyo E, Baraibar AG, Ullrich R, Hofrichter M, Yanase H, et al. Peroxygenase-catalyzed oxyfunctionalization reactions promoted by the complete oxidation of methanol. Angew Chem Int Ed 2016;55:798–801.CrossrefWeb of ScienceGoogle Scholar

  • 14.

    Paul CE, Churakova E, Maurits E, Girhard M, Urlacher VB, Hollmann F. In situ formation of H2O2 for P450 peroxygenases. Bioorg Med Chem 2014;22:5692–6.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 15.

    Churakova E, Arends IW, Hollmann F. Increasing the productivity of peroxidase-catalyzed oxyfunctionalization: a case study on the potential of two-liquid-phase systems. ChemCatChem 2013;5:565–8.Web of ScienceCrossrefGoogle Scholar

  • 16.

    Churakova E, Kluge M, Ullrich R, Arends I, Hofrichter M, Hollmann F. Specific photobiocatalytic oxyfunctionalization reactions. Angew Chem Int Ed 2011;50:10716–9.CrossrefGoogle Scholar

  • 17.

    Perez DI, Mifsud Grau M, Arends IW, Hollmann F. Visible light-driven and chloroperoxidase-catalyzed oxygenation reactions. Chem Commun 2009;0:6848–50.Web of ScienceGoogle Scholar

  • 18.

    Rocha-Martin J, Velasco-Lozano S, Guisan JM, Lopez-Gallego F. Oxidation of phenolic compounds catalyzed by immobilized multi-enzyme systems with integrated hydrogen peroxide production. Green Chem 2014;16:303–11.CrossrefWeb of ScienceGoogle Scholar

  • 19.

    Popov VO, Lamzin VS. NAD+-dependent formate dehydrogenase. Biochemical J 1994;301:625–43.CrossrefGoogle Scholar

  • 20.

    Shaked Z, Whitesides GM. Enzyme-catalyzed organic synthesis: NADH regeneration by using formate dehydrogenase. J Am Chem Soc 1980;102:7104–5.CrossrefGoogle Scholar

  • 21.

    Fitzpatrick TB, Amrhein M, Macheroux P. Characterization of YqjM, an old yellow enzyme homolog from Bacillus subtilis involved in the oxidative stress response. J Biol Chem 2003;278:19891–7.CrossrefPubMedGoogle Scholar

  • 22.

    Pesic M, Fernández-Fueyo E, Hollmann F. Characterization of the old yellow enzyme homolog from Bacillus subtilis (YqjM). ChemistrySelect 2017;2:3866–71.Web of ScienceCrossrefGoogle Scholar

  • 23.

    Molina-Espeja P, Garcia-Ruiz E, Gonzalez-Perez D, Ullrich R, Hofrichter M, Alcalde M. Directed evolution of unspecific peroxygenase from Agrocybe aegerita. Appl Environ Microbiol 2014;80:3496–507.Web of ScienceCrossrefPubMedGoogle Scholar

  • 24.

    Molina-Espeja P, Ma S, Mate DM, Ludwig R, Alcalde M. Tandem-yeast expression system for engineering and producing un specific peroxygenase. Enzyme Microb Technol 2015;73–74: 29–33.Google Scholar

  • 25.

    Tishkov VI, Popov VO. Catalytic mechanism and application of formate dehydrogenase. Biochem-Moscow 2004;69:1252–3.CrossrefGoogle Scholar

  • 26.

    Kluge M, Ullrich R, Scheibner K, Hofrichter M. Stereoselective benzylic hydroxylation of alkylbenzenes and epoxidation of styrene derivatives catalyzed by the peroxygenase of Agrocybe aegerita. Green Chem 2012;14:440–6.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2018-09-04

Revised: 2018-09-19

Accepted: 2018-10-04

Published Online: 2018-10-31

Citation Information: Zeitschrift für Naturforschung C, 20180137, ISSN (Online) 1865-7125, ISSN (Print) 0939-5075, DOI: https://doi.org/10.1515/znc-2018-0137.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in