1.
Sheldon RA, Woodley JM. Role of biocatalysis in sustainable chemistry. Chem Rev 2018;118:801–38.CrossrefPubMedWeb of ScienceGoogle Scholar
2.
Bilal M, Iqbal HM, Guo S, Hu H, Wang W, Zhang X. State-of-the-art protein engineering approaches using biological macromolecules: a review from immobilization to implementation view point. Int J Biol Macromol 2018;108:893–901.Web of ScienceCrossrefPubMedGoogle Scholar
3.
Bornscheuer U, Huisman G, Kazlauskas R, Lutz S, Moore J, Robins K. Engineering the third wave of biocatalysis. Nature 2012;485:185–94.PubMedWeb of ScienceCrossrefGoogle Scholar
4.
Strohmeier GA, Pichler H, May O, Gruber-Khadjawi M. Application of designed enzymes in organic synthesis. Chem Rev 2011;111:4142–64.Web of ScienceGoogle Scholar
5.
Sánchez-Moreno I, Oroz-Guinea I, Iturrate L, García-Junceda E. Multi-enzyme reactions. In: Carreira EM, Yamamoto H, editors. Comprehensive chirality. Cambridge, MA: Academic Press, 2012.Google Scholar
6.
Turner NJ. Introduction and general concepts. In: Carreira EM, Yamamoto H, editors. Comprehensive chirality. Cambridge, MA: Academic Press, 2012.Google Scholar
7.
Sperl JM, Sieber V. Multi-enzyme cascade reactions – status and recent advances. ACS Catal 2018;8:2385–96.CrossrefGoogle Scholar
8.
Schrittwieser JH, Velikogne S, Hall M, Kroutil W. Artificial biocatalytic linear cascades for preparation of organic molecules. Chem Rev 2018;118:270–348.Web of ScienceCrossrefPubMedGoogle Scholar
9.
Muschiol J, Peters C, Oberleitner N, Mihovilovic MD, Bornscheuer UT, Rudroff F. Cascade catalysis – strategies and challenges en route to preparative synthetic biology. Chem Comm 2015;51:5798–811.CrossrefGoogle Scholar
10.
Rudroff F, Mihovilovic MD, Gröger H, Snajdrova R, Iding H, Bornscheuer UT. Opportunities and challenges for combining chemo- and biocatalysis. Nature Catal 2018;1:12–22.CrossrefWeb of ScienceGoogle Scholar
11.
Bornscheuer UT, Bessler C, Srinivas R, Krishna SH. Optimizing lipases and related enzymes for efficient application. Trends Biotechnol 2002;20:433–7.PubMedCrossrefGoogle Scholar
12.
Pollegioni L, Molla G. New biotech applications from evolved d-amino acid oxidases. Trends Biotechnol 2011;29:276–83.PubMedCrossrefWeb of ScienceGoogle Scholar
13.
Savile CK, Lalonde JJ. Biotechnology for the acceleration of carbon dioxide capture and sequestration. Curr Opin Biotechnol 2011;22:818–23.CrossrefWeb of SciencePubMedGoogle Scholar
14.
Woodley JM. Protein engineering of enzymes for process applications. Curr Opin Chem Biol 2013;17:310–16.PubMedCrossrefWeb of ScienceGoogle Scholar
15.
Banerjee S, Kumar R, Pal P. Fermentative production of gluconic acid: a membrane-integrated Green process. J Taiwan Inst Chem Eng 2018;84:76–84.CrossrefWeb of ScienceGoogle Scholar
16.
Pal P, Kumar R, Banerjee S. Manufacture of gluconic acid: A review towards process intensification for green production. Chem Eng Process 2016;104:160–71.CrossrefWeb of ScienceGoogle Scholar
17.
Pal P, Kumar R, Nayak J, Banerjee S. Fermentative production of gluconic acid in membrane-integrated hybrid reactor system: analysis of process intensification. Chem Eng Process 2017;122:258–68.Web of ScienceCrossrefGoogle Scholar
18.
Straathof AJ. The proportion of downstream costs in fermentative production processes. In: Moo-Young M, editor. Comprehensive biotechnology, 2nd ed. New York: Elsevier, 2011.Google Scholar
19.
Hustede JA, Haberstroh HJ, Schinzig E. Gluconic acid. In: Elvers B, editor. Ullmann’s encyclopedia of industrial chemistry. Weinheim, Germany: Wiley-VCH, 2012.Google Scholar
20.
Anastassiadis S, Morgunov IG. Gluconic acid production. Recent Pat on Biotechnol 2007;1:167–80.CrossrefGoogle Scholar
21.
Ishida T, Kinoshita N, Okatsu H, Akita T, Takei T, Haruta M. Influence of the support and the size of gold clusters on catalytic activity for glucose oxidation. Angew Chem Int Ed Engl 2008;120:9265–405.Google Scholar
22.
Mafra AC, Furlan FF, Badino AC, Tardioli PW. Gluconic acid production from sucrose in an airlift reactor using a multi-enzyme system. Bioprocess Biosyst Eng 2015;38:671–80.CrossrefWeb of ScienceGoogle Scholar
23.
Prüβe U, Heidinger S, Baatz C. Catalytic conversion of renewables: kinetic and mechanistic aspects of the gold-catalyzed liquid-phase glucose oxidation. Landbauforschung – vTI Agriculture and Forestry Research 2011;3:261–72.Google Scholar
24.
Cañete-Rodriguez AM, Santos-Dueñas IM, Jiménez-Hornero JE, Ehrenreich A, Liebl W, García-García I. Gluconic acid: properties, production methods and applications – an excellent opportunity for agro-industrial by-products and waste bio-valorization. Process Biochem 2016;51:1891–903.CrossrefWeb of ScienceGoogle Scholar
25.
Woodley JM. Reaction and process engineering. In: Drauz K, Groger H, May O, editors. Enzyme catalysis in organic synthesis. Weinheim: Wiley, 2012.Google Scholar
26.
Zhang C, Xing XH. Enzyme bioreactors. In: Moo-Young M, editor. Comprehensive biotechnology. Amsterdam: Elsevier, 2011.Google Scholar
27.
Zanchetta A, dos Santos AC, Ximenes E, Nunes CC, Boscoloa M, Gomes E, et al. Temperature dependent cellulase adsorption on lignin from sugarcane bagasse. Bioresour Technol 2018;252:143–9.CrossrefPubMedWeb of ScienceGoogle Scholar
28.
Murray PM, Tyler SN, Moseley JD. Beyond the numbers: charting chemical reaction space. Org Process Res Dev 2013;17:40–6.CrossrefWeb of ScienceGoogle Scholar
29.
Grossmann IE, Biegler LT. Part II. Future perspective on optimization. Comput Chem Eng 2004;28:1193–218.CrossrefGoogle Scholar
30.
Maria G. Enzymatic reactor selection and derivation of the optimal operation policy, by using a model-based modular simulation platform. Comput Chem Eng 2012;36:325–41.Web of ScienceCrossrefGoogle Scholar
31.
Tufvesson P, Lima-Ramos J, Haque NA, Gernaey KV, Woodley JM. Advances in the process development of biocatalytic processes. Org Process Res Dev 2013;17:1233–8.CrossrefWeb of ScienceGoogle Scholar
32.
Abu R. Process evaluation tools for enzymatic cascades. PhD thesis. Technical University of Denmark, Department of Chemical and Biochemical Engineering, 2017.Google Scholar
33.
Tufvesson P, Lima-Ramos J, Nordblad M, Woodley JM. Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev 2011;15:266–74.Web of ScienceCrossrefGoogle Scholar
34.
Banga JR, Balsa-Canto E, Moles CG, Alonso AA. Dynamic optimization of bioprocesses: efficient and robust numerical strategies. J Biotechnol 2005;117:407–19.CrossrefPubMedGoogle Scholar
35.
Santacoloma PA. Multi-enzyme process modeling. PhD thesis. Technical University of Denmark, Department of Chemical and Biochemical Engineering, 2012.Google Scholar
36.
Van Can HJ, ten Braake HA, Dubbelman S, Hellinga C, Luyben KC, Heijnen JJ. Understanding and applying the extrapolation properties of serial gray-box models. AIChE J 1998;44:1071–89.CrossrefGoogle Scholar
Comments (0)