Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung C

A Journal of Biosciences

Editor-in-Chief: Seibel, Jürgen

Editorial Board: Aigner , Achim / Boland, Wilhelm / Bornscheuer, Uwe / Hoffmann, Klaus


IMPACT FACTOR 2017: 0.882
5-year IMPACT FACTOR: 0.912

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.288
Source Normalized Impact per Paper (SNIP) 2017: 0.448

Online
ISSN
1865-7125
See all formats and pricing
More options …
Ahead of print

Issues

Design of enzymatic cascade processes for the production of low-priced chemicals

Angela Viviana Ruales-Salcedo
  • Grupo de Investigación en Aplicación de Nuevas Tecnologías, Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Edificio L103, Manizales, Colombia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juan Carlos Higuita
  • Grupo de Procesos Químicos, Catalíticos y Biotecnológicos, Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Edificio L103, Manizales, Colombia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Javier Fontalvo
  • Grupo de Investigación en Aplicación de Nuevas Tecnologías, Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Edificio L103, Manizales, Colombia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ John M. Woodley
  • Corresponding author
  • PROSYS Research Centre, Department of Chemical and Biochemical Engineering, The Technical University of Denmark (DTU), Building 229, 2800 Kgs. Lyngby, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-02-02 | DOI: https://doi.org/10.1515/znc-2018-0190

Abstract

While the application of enzymes to synthetic and industrial problems continues to grow, the major development today is focused on multi-enzymatic cascades. Such systems are particularly attractive, because many commercially available enzymes operate under relatively similar operating conditions. This opens the possibility of one-pot operation with multiple enzymes in a single reactor. In this paper the concept of modules is introduced whereby groups of enzymes are combined in modules, each operating in a single reactor, but with the option of various operating strategies to avoid any complications of nonproductive interactions between the enzymes, substrates or products in a given reactor. In this paper the selection of modules is illustrated using the synthesis of the bulk chemical, gluconic acid, from lignocellulosic waste.

Keywords: biocatalyst; biocatalytic reactions; multi-enzymatic cascade; reaction modules

References

  • 1.

    Sheldon RA, Woodley JM. Role of biocatalysis in sustainable chemistry. Chem Rev 2018;118:801–38.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 2.

    Bilal M, Iqbal HM, Guo S, Hu H, Wang W, Zhang X. State-of-the-art protein engineering approaches using biological macromolecules: a review from immobilization to implementation view point. Int J Biol Macromol 2018;108:893–901.Web of ScienceCrossrefPubMedGoogle Scholar

  • 3.

    Bornscheuer U, Huisman G, Kazlauskas R, Lutz S, Moore J, Robins K. Engineering the third wave of biocatalysis. Nature 2012;485:185–94.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 4.

    Strohmeier GA, Pichler H, May O, Gruber-Khadjawi M. Application of designed enzymes in organic synthesis. Chem Rev 2011;111:4142–64.Web of ScienceGoogle Scholar

  • 5.

    Sánchez-Moreno I, Oroz-Guinea I, Iturrate L, García-Junceda E. Multi-enzyme reactions. In: Carreira EM, Yamamoto H, editors. Comprehensive chirality. Cambridge, MA: Academic Press, 2012.Google Scholar

  • 6.

    Turner NJ. Introduction and general concepts. In: Carreira EM, Yamamoto H, editors. Comprehensive chirality. Cambridge, MA: Academic Press, 2012.Google Scholar

  • 7.

    Sperl JM, Sieber V. Multi-enzyme cascade reactions – status and recent advances. ACS Catal 2018;8:2385–96.CrossrefGoogle Scholar

  • 8.

    Schrittwieser JH, Velikogne S, Hall M, Kroutil W. Artificial biocatalytic linear cascades for preparation of organic molecules. Chem Rev 2018;118:270–348.Web of ScienceCrossrefPubMedGoogle Scholar

  • 9.

    Muschiol J, Peters C, Oberleitner N, Mihovilovic MD, Bornscheuer UT, Rudroff F. Cascade catalysis – strategies and challenges en route to preparative synthetic biology. Chem Comm 2015;51:5798–811.CrossrefGoogle Scholar

  • 10.

    Rudroff F, Mihovilovic MD, Gröger H, Snajdrova R, Iding H, Bornscheuer UT. Opportunities and challenges for combining chemo- and biocatalysis. Nature Catal 2018;1:12–22.CrossrefWeb of ScienceGoogle Scholar

  • 11.

    Bornscheuer UT, Bessler C, Srinivas R, Krishna SH. Optimizing lipases and related enzymes for efficient application. Trends Biotechnol 2002;20:433–7.PubMedCrossrefGoogle Scholar

  • 12.

    Pollegioni L, Molla G. New biotech applications from evolved d-amino acid oxidases. Trends Biotechnol 2011;29:276–83.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 13.

    Savile CK, Lalonde JJ. Biotechnology for the acceleration of carbon dioxide capture and sequestration. Curr Opin Biotechnol 2011;22:818–23.CrossrefWeb of SciencePubMedGoogle Scholar

  • 14.

    Woodley JM. Protein engineering of enzymes for process applications. Curr Opin Chem Biol 2013;17:310–16.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 15.

    Banerjee S, Kumar R, Pal P. Fermentative production of gluconic acid: a membrane-integrated Green process. J Taiwan Inst Chem Eng 2018;84:76–84.CrossrefWeb of ScienceGoogle Scholar

  • 16.

    Pal P, Kumar R, Banerjee S. Manufacture of gluconic acid: A review towards process intensification for green production. Chem Eng Process 2016;104:160–71.CrossrefWeb of ScienceGoogle Scholar

  • 17.

    Pal P, Kumar R, Nayak J, Banerjee S. Fermentative production of gluconic acid in membrane-integrated hybrid reactor system: analysis of process intensification. Chem Eng Process 2017;122:258–68.Web of ScienceCrossrefGoogle Scholar

  • 18.

    Straathof AJ. The proportion of downstream costs in fermentative production processes. In: Moo-Young M, editor. Comprehensive biotechnology, 2nd ed. New York: Elsevier, 2011.Google Scholar

  • 19.

    Hustede JA, Haberstroh HJ, Schinzig E. Gluconic acid. In: Elvers B, editor. Ullmann’s encyclopedia of industrial chemistry. Weinheim, Germany: Wiley-VCH, 2012.Google Scholar

  • 20.

    Anastassiadis S, Morgunov IG. Gluconic acid production. Recent Pat on Biotechnol 2007;1:167–80.CrossrefGoogle Scholar

  • 21.

    Ishida T, Kinoshita N, Okatsu H, Akita T, Takei T, Haruta M. Influence of the support and the size of gold clusters on catalytic activity for glucose oxidation. Angew Chem Int Ed Engl 2008;120:9265–405.Google Scholar

  • 22.

    Mafra AC, Furlan FF, Badino AC, Tardioli PW. Gluconic acid production from sucrose in an airlift reactor using a multi-enzyme system. Bioprocess Biosyst Eng 2015;38:671–80.CrossrefWeb of ScienceGoogle Scholar

  • 23.

    Prüβe U, Heidinger S, Baatz C. Catalytic conversion of renewables: kinetic and mechanistic aspects of the gold-catalyzed liquid-phase glucose oxidation. Landbauforschung – vTI Agriculture and Forestry Research 2011;3:261–72.Google Scholar

  • 24.

    Cañete-Rodriguez AM, Santos-Dueñas IM, Jiménez-Hornero JE, Ehrenreich A, Liebl W, García-García I. Gluconic acid: properties, production methods and applications – an excellent opportunity for agro-industrial by-products and waste bio-valorization. Process Biochem 2016;51:1891–903.CrossrefWeb of ScienceGoogle Scholar

  • 25.

    Woodley JM. Reaction and process engineering. In: Drauz K, Groger H, May O, editors. Enzyme catalysis in organic synthesis. Weinheim: Wiley, 2012.Google Scholar

  • 26.

    Zhang C, Xing XH. Enzyme bioreactors. In: Moo-Young M, editor. Comprehensive biotechnology. Amsterdam: Elsevier, 2011.Google Scholar

  • 27.

    Zanchetta A, dos Santos AC, Ximenes E, Nunes CC, Boscoloa M, Gomes E, et al. Temperature dependent cellulase adsorption on lignin from sugarcane bagasse. Bioresour Technol 2018;252:143–9.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 28.

    Murray PM, Tyler SN, Moseley JD. Beyond the numbers: charting chemical reaction space. Org Process Res Dev 2013;17:40–6.CrossrefWeb of ScienceGoogle Scholar

  • 29.

    Grossmann IE, Biegler LT. Part II. Future perspective on optimization. Comput Chem Eng 2004;28:1193–218.CrossrefGoogle Scholar

  • 30.

    Maria G. Enzymatic reactor selection and derivation of the optimal operation policy, by using a model-based modular simulation platform. Comput Chem Eng 2012;36:325–41.Web of ScienceCrossrefGoogle Scholar

  • 31.

    Tufvesson P, Lima-Ramos J, Haque NA, Gernaey KV, Woodley JM. Advances in the process development of biocatalytic processes. Org Process Res Dev 2013;17:1233–8.CrossrefWeb of ScienceGoogle Scholar

  • 32.

    Abu R. Process evaluation tools for enzymatic cascades. PhD thesis. Technical University of Denmark, Department of Chemical and Biochemical Engineering, 2017.Google Scholar

  • 33.

    Tufvesson P, Lima-Ramos J, Nordblad M, Woodley JM. Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev 2011;15:266–74.Web of ScienceCrossrefGoogle Scholar

  • 34.

    Banga JR, Balsa-Canto E, Moles CG, Alonso AA. Dynamic optimization of bioprocesses: efficient and robust numerical strategies. J Biotechnol 2005;117:407–19.CrossrefPubMedGoogle Scholar

  • 35.

    Santacoloma PA. Multi-enzyme process modeling. PhD thesis. Technical University of Denmark, Department of Chemical and Biochemical Engineering, 2012.Google Scholar

  • 36.

    Van Can HJ, ten Braake HA, Dubbelman S, Hellinga C, Luyben KC, Heijnen JJ. Understanding and applying the extrapolation properties of serial gray-box models. AIChE J 1998;44:1071–89.CrossrefGoogle Scholar

About the article

Received: 2018-11-22

Revised: 2019-01-04

Accepted: 2019-01-07

Published Online: 2019-02-02


Citation Information: Zeitschrift für Naturforschung C, 20180190, ISSN (Online) 1865-7125, ISSN (Print) 0939-5075, DOI: https://doi.org/10.1515/znc-2018-0190.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in