Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus

12 Issues per year


IMPACT FACTOR 2017: 1.144
5-year IMPACT FACTOR: 1.144

CiteScore 2017: 1.08

SCImago Journal Rank (SJR) 2017: 0.495
Source Normalized Impact per Paper (SNIP) 2017: 0.495

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 225, Issue 9-10

Issues

Pyrolysis of Ethyl Iodide as Hydrogen Atom Source: Kinetics and Mechanism in the Temperature Range 950–1200 K

Tobias Bentz
  • 1 Karlsruher Institut für Technologie (KIT), Institut für Physikalische Chemie, Karlsruhe, Deutschland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Milan Szőri / Béla Viskolcz / Matthias Olzmann
Published Online: 2011-10-06 | DOI: https://doi.org/10.1524/zpch.2011.0178

Abstract

Ethyl iodide is a well known H atom precursor in shock tube experiments. In the present work, we study peculiarities, when C2H5I is used under conditions, where its decomposition is not longer fast compared to consecutive bimolecular reactions. On the basis of shock tube experiments with detection of H and I atoms by resonance absorption spectrometry, accompanied by quantum chemical (CCSD(T)/6-311G//CCSD/6-311G) and statistical rate theory calculations, we propose a small mechanism (5 reactions, 7 species) and kinetic data, which allow an adequate description of C2H5I pyrolysis as a H atom source down to temperatures between 950 and 1200 K at pressures ranging from 1 to 4 bar: C2H5I→C2H5 + I (1), k1 = 9.9 × 1012 exp(−23200 K/T) s−1; C2H5 + M→C 2H4 + H + M (2), k2 = 1.7 × 10−6 exp(−16800 KT) cm3 s−1 [D. L. Baulch et al., J. Phys. Chem. Ref. Data 34 (2005) 757]; C2H5I→C2H4 + HI (3), k3 = 1.7 × 1013 exp(−26680 KT) s−1; H + HI→H2 + I (4), k4 = 7.9 × 10−11 exp(−330 KT) cm3 s−1 [D. L. Baulch et al., J. Phys. Chem. Ref. Data 10(Suppl. 1) (1981) 1]; C2H5I + H→C2H5 + HI (5), k5 = 7.0 × 10−9 exp(−3940 KT) cm3 s−1. The latter bimolecular abstraction step turned out crucial for an adaquate d escription of the hydrogen atom concentration-time profiles in the above mentioned temperature and pressure range for initial concentrations [C2H5I]0 > 2 × 1013 cm−3 corresponding to mole fractions > 1 ppm.

Keywords: Chemical Kinetics; Shock Tube; Elementary Reactions; Ethyl Iodide; Hydrogen Atom

About the article

* Correspondence address: Karlsruher Institut für Technologie (KIT), Institut für Physikalische Chemie, Fritz-Haber-Weg 2, 76131 Karlsruhe, Deutschland,


Published Online: 2011-10-06

Published in Print: 2011-10-01


Citation Information: Zeitschrift für Physikalische Chemie, Volume 225, Issue 9-10, Pages 1117–1128, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1524/zpch.2011.0178.

Export Citation

© by Oldenbourg Wissenschaftsverlag, Karlsruhe, Germany.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
[4]
Chia-Chieh Lin, Wei-Yu Chen, Hiroyuki Matsui, and Niann-Shiah Wang
The Journal of Chemical Physics, 2017, Volume 147, Number 6, Page 064304
[5]
Nancy Faßheber, Johannes Dammeier, and Gernot Friedrichs
Phys. Chem. Chem. Phys., 2014, Volume 16, Number 23, Page 11647
[6]
Philipp Friese, John M. Simmie, and Matthias Olzmann
Proceedings of the Combustion Institute, 2013, Volume 34, Number 1, Page 233

Comments (0)

Please log in or register to comment.
Log in