Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus

12 Issues per year


IMPACT FACTOR 2017: 1.144
5-year IMPACT FACTOR: 1.144

CiteScore 2017: 1.08

SCImago Journal Rank (SJR) 2017: 0.495
Source Normalized Impact per Paper (SNIP) 2017: 0.495

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 231, Issue 2

Issues

The Quantum Dynamical Basis of a Classical Kinetic Scheme Describing Coherent and Incoherent Regimes of Radical Pair Recombination

Nikita N. Lukzen
  • Novosibirsk State University, Pirogova Str. 2, and International Tomography Center, Siberian Branch Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Johannes H. Klein
  • Institut für Organische Chemie, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christoph Lambert
  • Institut für Organische Chemie, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ulrich E. Steiner
Published Online: 2016-09-24 | DOI: https://doi.org/10.1515/zpch-2016-0833

Abstract

In recent work from this group (J. H. Klein et al. J. Am. Chem. Soc. 2015, 137, 11011), the magnetic field dependent charge recombination kinetics in donor/Ir-complex/acceptor triads has been determined with outstanding accuracy and reproducibility. The field-dependent kinetics has been analyzed in terms of a classical reaction scheme including the field-independent rate parameters of singlet recombination (rate constant kS) and S/T0 mixing (rate constant kST0) and the field-dependent rate constant k±(B) connecting central and outer Zeeman levels. In the present work, the extraction of k± from the experimental data is more precisely defined and the appearance of a “coherent” and “incoherent” regime of spin motion in a double log plot of k± vs. B is confirmed. The experimental decay curves have been reproduced by a full quantum dynamical model based on the stochastic Liouville equation, which was solved numerically, taking into account isotropic hyperfine coupling with five nuclear spins (1 N on donor radical, 4 H on acceptor radical) and anisotropic hyperfine coupling with the nitrogen nucleus at the donor radical. The results of the quantum calculations serve as a rigorous basis of interpreting the classical parameter k±. Furthermore, it is demonstrated that the incoherent part of spin motion is essential for a full understanding of the charge recombination kinetics even in the “coherent” regime.

Keywords: charge recombination; linked radical pairs; spin chemistry; spin relaxation

Dedicated to: Professor Kev Salikhov on the occasion of his 80th birthday.

References

  • 1.

    G. L. Closs, J. Am. Chem. Soc. 91 (1969) 4552.Google Scholar

  • 2.

    R. Kaptein, J. L. Oosterhoff, Chem. Phys. Lett. 4 (1969) 195.Google Scholar

  • 3.

    F. J. Adrian, J. Chem. Phys. 53 (1970) 3374.Google Scholar

  • 4.

    F. J. Adrian, J. Chem. Phys. 54 (1971) 3912.Google Scholar

  • 5.

    P. W. Atkins, R. C. Gurd, K. A. McLauchlan, A. F. Simpson, Chem. Phys. Lett. 8 (1971) 55.Google Scholar

  • 6.

    J. B. Pedersen, J. H. Freed, J.Chem.Phys. 59 (1973) 2869.Google Scholar

  • 7.

    J. B. Pedersen, J. H. Freed, J. Chem. Phys. 62 (1974) 1706.Google Scholar

  • 8.

    R. Haberkorn, Chem. Phys. 19 (1977) 165.Google Scholar

  • 9.

    R. Haberkorn, Chem. Phys. 26 (1977) 35.Google Scholar

  • 10.

    T. Haberkorn, Chem. Phys. 24 (1977) 111.Google Scholar

  • 11.

    Z. Schulten, K. Schulten, J. Chem. Phys. 67 (1977) 4616.Google Scholar

  • 12.

    H. J. Werner, Z. Schulten, K. Schulten, J. Chem. Phys. 67 (1977) 646.Google Scholar

  • 13.

    K. Schulten, P. G. Wolynes, J. Chem. Phys. 68 (1978) 3292.Google Scholar

  • 14.

    W. Knapp, K. Schulten, J. Chem. Phys. 71 (1979) 1878.Google Scholar

  • 15.

    K. M. Salikhov, Theor. Exp. Chem. (1977) 13.Google Scholar

  • 16.

    K. M. Salikhov, Y. N. Molin, R. Z. Sagdeev, A. L. Buchachenko, Spin polarization and Magnetic Effects in Radical Reactions, Elsevier: Amsterdam, The Netherlands, 1984.Google Scholar

  • 17.

    U. E. Steiner, T. Ulrich, Chem. Rev. 89 (1989) 51.Google Scholar

  • 18.

    J. Wang, C. J. Doubleday, N. J. Turro, J. Phys. Chem. 93 (1989) 4780.Google Scholar

  • 19.

    Y. Tanimoto, M. Takashima, K. Hasegawa, M. Itoh, Chem. Phys. Lett. 137 (1987) 330.Google Scholar

  • 20.

    A. Weller, H. Staerk, R. Treichel, Royal Chem. Soc. Far. Discuss. 78 (1984) 271.Google Scholar

  • 21.

    H. Staerk, W. Kühnle, R. Treichel, A. Weller, Chem. Phys. Lett. 118 (1985) 19.Google Scholar

  • 22.

    H. Heitele, M. E. Michel-Beyerle, P. Finckh, Chem. Phys. Lett. 134 (1987) 273.Google Scholar

  • 23.

    F. J. J. de Kanter, J. A. den Hollander, A. H. Huizer., R. Kaptein, Mol. Phys. 34 (1977) 857.Google Scholar

  • 24.

    R. Bittl, K. Schulten, Chem. Phys. Lett. 173 (1990) 387.Google Scholar

  • 25.

    U. Werner, H. Staerk, J Phys Chem-Us 97 (1993) 9274.Google Scholar

  • 26.

    H. Oevering, M. N. Paddon-Row, M. Heppener, A. M. Oliver, E. Cotsaris, J. W. Verhoeven, N. S. Hush, J. Am. Chem. Soc. 109 (1987) 3258.Google Scholar

  • 27.

    M. R. Wasielewski, M. P. Niemczyk, D. G. Johnson, W. A. Svec, D. W. Minsek, Tetrahedron. 45 (1989) 4785.Google Scholar

  • 28.

    D. Kuciauskas, P. A. Lidell, A. L. Moore, T. A. Moore, D. J. Gust, Am. Chem. Soc. 120 (1998) 10880.Google Scholar

  • 29.

    J. W. Verhoeven, J. Photochem. Photobiol. C: Photochemical Reviews. 7 (2006) 40.Google Scholar

  • 30.

    T. Miura, M. R. Wasielewski, J. Am. Chem. Soc. 133 (2011) 2844.Google Scholar

  • 31.

    K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Lidell, D. Gust, C. R. Timmel, P. J. Hore. Nature 453 (2008) 387.Google Scholar

  • 32.

    K. Maeda, C. J. Wedge, J. G. Storey, K. B. Henbest, P. A. Lidell, G. Kordis, D. Gust, P. J. Hore, C. R. Timmel, Chem. Commun. 47 (2011) 6563.Google Scholar

  • 33.

    J. H. Klein, D. Schmidt, U. E. Steiner, C. Lambert, J. Am. Chem. Soc. 137, (2015) 11011.Google Scholar

  • 34.

    H. Hayashi, S. Nagakura, Bull. Chem. Soc. Jap. 57 (1984) 322.Google Scholar

  • 35.

    U. E. Steiner, H. J. Wolff, In Photochemistry and Photophysics, J. J. Rabek, G. W. Scott, Eds. CRC Press: Boca Raton, 1991, Vol. IV, p. 1.Google Scholar

  • 36.

    Values of 2.33 mT and 2.61 mT ares obtained using Weller’s [37] and Schulten’s [38] equations, respectively.

  • 37.

    A. Weller, F. Nolting, H. Staerk, Chem. Phys. Lett. 96 (1983) 24.Google Scholar

  • 38.

    K. Schulten, J. Chem. Phys. 82 (1985) 1312.Google Scholar

  • 39.

    R. Haberkorn, Mol. Phys. 32 (1976) 1491.Google Scholar

  • 40.

    K. Maeda, P. Liddell, D. Gust, P. J. Hore, J. Chem. Phys. 139 (2013) 234309.Google Scholar

  • 41.

    K. Tsampourakis, I. K. Kominis, Chem. Phys. Lett. 640 (2015) 40.Google Scholar

  • 42.

    K. Lüders, K. M. Salikhov, Chem. Phys. 117 (1987) 113.Google Scholar

  • 43.

    E. B. Krissinel, A. I. Burshtein, N. N. Lukzen, U. E. Steiner, Mol. Phys. 96 (1998) 1083.Google Scholar

  • 44.

    E. V. Gorelik, N. N. Lukzen, R. Z. Sagdeev, U. E. Steiner, Chem. Phys. 262 (2000) 303.Google Scholar

  • 45.

    A. M. Lewis, D. E. Manolopoulos, P. J. Hore, J. Chem. Phys. 141 (2014) 044111.Google Scholar

  • 46.

    D. R. Kattnig, J. K. Sowa, I. A. Solov’yov, P. J. Hore, New J. Phys. 18 (2016) 063007.Google Scholar

  • 47.

    C. P. Slichter, Principles of magnetic resonance, Springer Berlin: Berlin, 2010.Google Scholar

  • 48.

    M. V. Fedin, P. A. Purtov, E. G. Bagryanskaya, J. Chem. Phys. 118 (2003) 192.Google Scholar

  • 49.

    M. V. Fedin, P. A. Purtov, E. G. Bagryanskaya, Chem. Phys. Lett. 339 (2001) 395.Google Scholar

  • 50.

    MATLAB and Statistics Toolbox Release 2016a, The MathWorks, Inc., Natick, Massachusetts, United States, 2016.Google Scholar

  • 51.

    H. J. Hogben, P. J. Hore, I. Kuprov, J. Chem. Phys. 132 (2010) 174101.Google Scholar

  • 52.

    The value of 6.97×106 s-1 given in ref. [33] should read 6.87106 s-1.

  • 53.

    E. V. Kalneus, A. A. Kipriyanov, P. A. Purtov, D. V. Stass, Y. N. Molin, Dokl. Phys. Chem. 415 (2007) 170.Google Scholar

  • 54.

    E. V. Kalneus, A. A. Kipriyanov, A. A. Pukhov, D. V. Stass, Y. N. Molin, Appl. Magn. Reson. 30 (2006) 549.Google Scholar

  • 55.

    A. Carrington, A. D. McLachlan, Introduction to magnetic resonance, Chapman and Hall: London, 1967.Google Scholar

About the article

aPresent address: UMR 5249 (Unité Mixte de Recherche) – LCBM – BIG – CEA, 17 Rue des Martyrs, 38054 Grenoble, France


Received: 2016-06-18

Accepted: 2016-08-17

Published Online: 2016-09-24

Published in Print: 2017-02-01


Citation Information: Zeitschrift für Physikalische Chemie, Volume 231, Issue 2, Pages 197–223, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2016-0833.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in