Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 1.021

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.327
Source Normalized Impact per Paper (SNIP) 2018: 0.391

See all formats and pricing
More options …
Volume 231, Issue 2


The Quantum Dynamical Basis of a Classical Kinetic Scheme Describing Coherent and Incoherent Regimes of Radical Pair Recombination

Nikita N. Lukzen
  • Novosibirsk State University, Pirogova Str. 2, and International Tomography Center, Siberian Branch Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Johannes H. Klein
  • Institut für Organische Chemie, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christoph Lambert
  • Institut für Organische Chemie, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ulrich E. Steiner
Published Online: 2016-09-24 | DOI: https://doi.org/10.1515/zpch-2016-0833


In recent work from this group (J. H. Klein et al. J. Am. Chem. Soc. 2015, 137, 11011), the magnetic field dependent charge recombination kinetics in donor/Ir-complex/acceptor triads has been determined with outstanding accuracy and reproducibility. The field-dependent kinetics has been analyzed in terms of a classical reaction scheme including the field-independent rate parameters of singlet recombination (rate constant kS) and S/T0 mixing (rate constant kST0) and the field-dependent rate constant k±(B) connecting central and outer Zeeman levels. In the present work, the extraction of k± from the experimental data is more precisely defined and the appearance of a “coherent” and “incoherent” regime of spin motion in a double log plot of k± vs. B is confirmed. The experimental decay curves have been reproduced by a full quantum dynamical model based on the stochastic Liouville equation, which was solved numerically, taking into account isotropic hyperfine coupling with five nuclear spins (1 N on donor radical, 4 H on acceptor radical) and anisotropic hyperfine coupling with the nitrogen nucleus at the donor radical. The results of the quantum calculations serve as a rigorous basis of interpreting the classical parameter k±. Furthermore, it is demonstrated that the incoherent part of spin motion is essential for a full understanding of the charge recombination kinetics even in the “coherent” regime.

Keywords: charge recombination; linked radical pairs; spin chemistry; spin relaxation

Dedicated to: Professor Kev Salikhov on the occasion of his 80th birthday.


  • 1.

    G. L. Closs, J. Am. Chem. Soc. 91 (1969) 4552.Google Scholar

  • 2.

    R. Kaptein, J. L. Oosterhoff, Chem. Phys. Lett. 4 (1969) 195.Google Scholar

  • 3.

    F. J. Adrian, J. Chem. Phys. 53 (1970) 3374.Google Scholar

  • 4.

    F. J. Adrian, J. Chem. Phys. 54 (1971) 3912.Google Scholar

  • 5.

    P. W. Atkins, R. C. Gurd, K. A. McLauchlan, A. F. Simpson, Chem. Phys. Lett. 8 (1971) 55.Google Scholar

  • 6.

    J. B. Pedersen, J. H. Freed, J.Chem.Phys. 59 (1973) 2869.Google Scholar

  • 7.

    J. B. Pedersen, J. H. Freed, J. Chem. Phys. 62 (1974) 1706.Google Scholar

  • 8.

    R. Haberkorn, Chem. Phys. 19 (1977) 165.Google Scholar

  • 9.

    R. Haberkorn, Chem. Phys. 26 (1977) 35.Google Scholar

  • 10.

    T. Haberkorn, Chem. Phys. 24 (1977) 111.Google Scholar

  • 11.

    Z. Schulten, K. Schulten, J. Chem. Phys. 67 (1977) 4616.Google Scholar

  • 12.

    H. J. Werner, Z. Schulten, K. Schulten, J. Chem. Phys. 67 (1977) 646.Google Scholar

  • 13.

    K. Schulten, P. G. Wolynes, J. Chem. Phys. 68 (1978) 3292.Google Scholar

  • 14.

    W. Knapp, K. Schulten, J. Chem. Phys. 71 (1979) 1878.Google Scholar

  • 15.

    K. M. Salikhov, Theor. Exp. Chem. (1977) 13.Google Scholar

  • 16.

    K. M. Salikhov, Y. N. Molin, R. Z. Sagdeev, A. L. Buchachenko, Spin polarization and Magnetic Effects in Radical Reactions, Elsevier: Amsterdam, The Netherlands, 1984.Google Scholar

  • 17.

    U. E. Steiner, T. Ulrich, Chem. Rev. 89 (1989) 51.Google Scholar

  • 18.

    J. Wang, C. J. Doubleday, N. J. Turro, J. Phys. Chem. 93 (1989) 4780.Google Scholar

  • 19.

    Y. Tanimoto, M. Takashima, K. Hasegawa, M. Itoh, Chem. Phys. Lett. 137 (1987) 330.Google Scholar

  • 20.

    A. Weller, H. Staerk, R. Treichel, Royal Chem. Soc. Far. Discuss. 78 (1984) 271.Google Scholar

  • 21.

    H. Staerk, W. Kühnle, R. Treichel, A. Weller, Chem. Phys. Lett. 118 (1985) 19.Google Scholar

  • 22.

    H. Heitele, M. E. Michel-Beyerle, P. Finckh, Chem. Phys. Lett. 134 (1987) 273.Google Scholar

  • 23.

    F. J. J. de Kanter, J. A. den Hollander, A. H. Huizer., R. Kaptein, Mol. Phys. 34 (1977) 857.Google Scholar

  • 24.

    R. Bittl, K. Schulten, Chem. Phys. Lett. 173 (1990) 387.Google Scholar

  • 25.

    U. Werner, H. Staerk, J Phys Chem-Us 97 (1993) 9274.Google Scholar

  • 26.

    H. Oevering, M. N. Paddon-Row, M. Heppener, A. M. Oliver, E. Cotsaris, J. W. Verhoeven, N. S. Hush, J. Am. Chem. Soc. 109 (1987) 3258.Google Scholar

  • 27.

    M. R. Wasielewski, M. P. Niemczyk, D. G. Johnson, W. A. Svec, D. W. Minsek, Tetrahedron. 45 (1989) 4785.Google Scholar

  • 28.

    D. Kuciauskas, P. A. Lidell, A. L. Moore, T. A. Moore, D. J. Gust, Am. Chem. Soc. 120 (1998) 10880.Google Scholar

  • 29.

    J. W. Verhoeven, J. Photochem. Photobiol. C: Photochemical Reviews. 7 (2006) 40.Google Scholar

  • 30.

    T. Miura, M. R. Wasielewski, J. Am. Chem. Soc. 133 (2011) 2844.Google Scholar

  • 31.

    K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Lidell, D. Gust, C. R. Timmel, P. J. Hore. Nature 453 (2008) 387.Google Scholar

  • 32.

    K. Maeda, C. J. Wedge, J. G. Storey, K. B. Henbest, P. A. Lidell, G. Kordis, D. Gust, P. J. Hore, C. R. Timmel, Chem. Commun. 47 (2011) 6563.Google Scholar

  • 33.

    J. H. Klein, D. Schmidt, U. E. Steiner, C. Lambert, J. Am. Chem. Soc. 137, (2015) 11011.Google Scholar

  • 34.

    H. Hayashi, S. Nagakura, Bull. Chem. Soc. Jap. 57 (1984) 322.Google Scholar

  • 35.

    U. E. Steiner, H. J. Wolff, In Photochemistry and Photophysics, J. J. Rabek, G. W. Scott, Eds. CRC Press: Boca Raton, 1991, Vol. IV, p. 1.Google Scholar

  • 36.

    Values of 2.33 mT and 2.61 mT ares obtained using Weller’s [37] and Schulten’s [38] equations, respectively.

  • 37.

    A. Weller, F. Nolting, H. Staerk, Chem. Phys. Lett. 96 (1983) 24.Google Scholar

  • 38.

    K. Schulten, J. Chem. Phys. 82 (1985) 1312.Google Scholar

  • 39.

    R. Haberkorn, Mol. Phys. 32 (1976) 1491.Google Scholar

  • 40.

    K. Maeda, P. Liddell, D. Gust, P. J. Hore, J. Chem. Phys. 139 (2013) 234309.Google Scholar

  • 41.

    K. Tsampourakis, I. K. Kominis, Chem. Phys. Lett. 640 (2015) 40.Google Scholar

  • 42.

    K. Lüders, K. M. Salikhov, Chem. Phys. 117 (1987) 113.Google Scholar

  • 43.

    E. B. Krissinel, A. I. Burshtein, N. N. Lukzen, U. E. Steiner, Mol. Phys. 96 (1998) 1083.Google Scholar

  • 44.

    E. V. Gorelik, N. N. Lukzen, R. Z. Sagdeev, U. E. Steiner, Chem. Phys. 262 (2000) 303.Google Scholar

  • 45.

    A. M. Lewis, D. E. Manolopoulos, P. J. Hore, J. Chem. Phys. 141 (2014) 044111.Google Scholar

  • 46.

    D. R. Kattnig, J. K. Sowa, I. A. Solov’yov, P. J. Hore, New J. Phys. 18 (2016) 063007.Google Scholar

  • 47.

    C. P. Slichter, Principles of magnetic resonance, Springer Berlin: Berlin, 2010.Google Scholar

  • 48.

    M. V. Fedin, P. A. Purtov, E. G. Bagryanskaya, J. Chem. Phys. 118 (2003) 192.Google Scholar

  • 49.

    M. V. Fedin, P. A. Purtov, E. G. Bagryanskaya, Chem. Phys. Lett. 339 (2001) 395.Google Scholar

  • 50.

    MATLAB and Statistics Toolbox Release 2016a, The MathWorks, Inc., Natick, Massachusetts, United States, 2016.Google Scholar

  • 51.

    H. J. Hogben, P. J. Hore, I. Kuprov, J. Chem. Phys. 132 (2010) 174101.Google Scholar

  • 52.

    The value of 6.97×106 s-1 given in ref. [33] should read 6.87106 s-1.

  • 53.

    E. V. Kalneus, A. A. Kipriyanov, P. A. Purtov, D. V. Stass, Y. N. Molin, Dokl. Phys. Chem. 415 (2007) 170.Google Scholar

  • 54.

    E. V. Kalneus, A. A. Kipriyanov, A. A. Pukhov, D. V. Stass, Y. N. Molin, Appl. Magn. Reson. 30 (2006) 549.Google Scholar

  • 55.

    A. Carrington, A. D. McLachlan, Introduction to magnetic resonance, Chapman and Hall: London, 1967.Google Scholar

About the article

aPresent address: UMR 5249 (Unité Mixte de Recherche) – LCBM – BIG – CEA, 17 Rue des Martyrs, 38054 Grenoble, France

Received: 2016-06-18

Accepted: 2016-08-17

Published Online: 2016-09-24

Published in Print: 2017-02-01

Citation Information: Zeitschrift für Physikalische Chemie, Volume 231, Issue 2, Pages 197–223, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2016-0833.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Thomas P. Fay and David E. Manolopoulos
The Journal of Chemical Physics, 2019, Volume 150, Number 15, Page 151102
Julian Schäfer, Marco Holzapfel, Alexander Schmiedel, Ulrich E. Steiner, and Christoph Lambert
Physical Chemistry Chemical Physics, 2018
Stefan Riese, Lena Mungenast, Alexander Schmiedel, Marco Holzapfel, Nikita N. Lukzen, Ulrich E. Steiner, and Christoph Lambert
Molecular Physics, 2018, Page 1

Comments (0)

Please log in or register to comment.
Log in